a2 United States Patent

Chhatriwala et al.

US009351195B2

(10) Patent No.: US 9,351,195 B2
(45) Date of Patent: May 24, 2016

(54) HANDLING INCOMPRESSIBLE DATA
PACKETS ON MULTIPLE DATA FLOWS

(71) Applicant: QUALCOMM Incorporated, San
Diego, CA (US)

(72) Inventors: Murtuza Taheri Chhatriwala, San
Diego, CA (US); Venkata Ramanan
Venkatachalam Jayaraman, Del Mar,
CA (US); Rohit Kapoor, San Diego, CA
(US); Srinivasa Rao Eravelli, San
Diego, CA (US); Sumanth
Govindappa, San Diego, CA (US);
Sivaram Srivenkata Palakodety, San
Diego, CA (US)

(73) Assignee: QUALCOMM Incorporated, San
Diego, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 115 days.

(21) Appl. No.: 14/312,419

(22) Filed: Jun. 23,2014

(65) Prior Publication Data
US 2015/0085876 Al Mar. 26, 2015

Related U.S. Application Data
(60) Provisional application No. 61/881,134, filed on Sep.

(58) Field of Classification Search
CPC HO04W 28/06; HO4W 28/065; HO04B 7/14;
HO04B 7/15; HO04B 7/145; H04B 7/15507,
HO04B 7/15571; HO04B 10/29; HO4B 7/15542
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,195,024 Bl 2/2001 Fallon
7,420,992 B1* 9/2008 Fang HO4L 12/4633
370/477

(Continued)

FOREIGN PATENT DOCUMENTS

EP 2469 793 Al 6/2012
OTHER PUBLICATIONS

International Search Report and Written Opinion—PCT/US2014/
056758—ISA/EPO—Jan. 19, 2015. (8 total pages).

Primary Examiner — Ahmed Elallam
(74) Attorney, Agent, or Firm — Arent Fox LLP

(57) ABSTRACT

Methods and apparatus of compression on multiple data flows
for communication between a user equipment (UE) and a
serving node. The methods and apparatus include receiving
multiple data flows for compression, wherein each of the
multiple data flows includes a plurality of data packets, with
each data packet having a data packet header and a payload.
Further, the methods and apparatus include determining a

23, 2013. compression state for each of the multiple data flows. More-
over, the methods and apparatus include performing a first
(51) Int.CL compression algorithm on each of the multiple data flows
Ho4w 28/06 (2009.01) determined to have a compression state set to a do-not-com-
HO04W 24/02 (2009.01) press state, wherein the first compression algorithm includes
Ho4L 29/06 (2006.01) compressing the data packet header of each data packet with-
(52) US.CL out compressing the payload of each data packet.
CPC ..o HO4W 28/06 (2013.01); HO4L 69/04
(2013.01) 26 Claims, 16 Drawing Sheets
e | Y
[~ 408 Determine 409
Compi pres i Testing I 410
r 411 Ia 412
Update Isv?I of Do-Not-Compress Update Iev.el of e 413
compression compression

414

Determine’
‘whether lsvel of

satisfies
threshold,

whether duration

415 " 418
Determine

compression
satisfies
threshold,

satisfies
threshold

US 9,351,195 B2

Page 2
(56) References Cited 2008/0101220 Al* 5/2008 Kimcccoeenne. HO4L 12/189
370/229
U.S. PATENT DOCUMENTS 2010/0098109 Al1* 4/2010 Le Pennec HO3M 7/3066
370/477
8,599,878 B2* 12/2013 Wuccceveienne. HO04W 28/06 2011/0058474 A1* 3/2011 Nagapudi HO04L 45/745
370/392 370/235
8,867,447 B2* 10/2014 Kotecha HO4L 69/04 2012/0201205 A1* 8/2012 Gopalakrishnan HO4L 1/1816
_ 370/241 370/329
8,885,670 B2* 11/2014 Niddam HO4L 69/04 2013/0022032 Al* 1/2013 Taghavi
370/389 Nasrabadi HO4W 28/06
8,886,837 B2* 11/2014 Shortcccoe.e. HO04L 69/04 370/338
709/224 ®
9.172,772 B2* 10/2015 Venkatachalam 2013/0064177 Al 3/2013 Venkatachalam HO04W 80/00
Jayaraman HO4L 69/04 370/328
2004/0114634 AL* 6/2004 Lig . HOAL. 63/045 2014/0101485 Al* 4/2014 Wegener HO3M 7/3068
370/521 714/32
2006/0104278 Al* 5/2006 Changc......... HO4L 47/10 2014/0233376 Al* 82014 YU ..cccccovvineen H04W 28/06
370/392 370/230
2007/0058679 Al* 3/2007 Pelletier HO04W 28/06 2014/0369365 Al* 12/2014 Denio HO04L 69/16
370/477 370/474
2008/0080559 Al* 4/2008 Singh HO04W 28/04
370/477 * cited by examiner

U.S. Patent

Component 145

FIG. 1

May 24, 2016 Sheet 1 of 16 US 9,351,195 B2
/— 100
125
123
112
no \
UE 114 4___;,'_____i _| Wireless
. it A Sening | Network
Call Processing ' h Node
Component 140 |- -',"7;'“> 116
7 < | w--f--- Y
II \ \-
/ \
/ \ 124
/ \
Compressor

U.S. Patent

May 24, 2016

Sheet 2 of 16

Data Flow 210

US 9,351,195 B2

Call Processing Component 140

Compressor Component 145

Compressor 220

Compression Algorithm 222

| Compressed Data Flow 212

State Component 148

Determining Component 310

Compression State 312

Do-Not-Compress T |

Testing State 314 | || Compress State 316 | |
| [———————— J T o wiine o o — —— — J L e ——Sta—tegjh—s— — — I
Timer Component 330 Packet Indicator
Duration 332 } Duration Threshold 334 | | 336
S—— ————e .

Evaluating Component 230

- - -
Evaluation Period 218 | Level of Compre;sﬁuon of Data Flow |
____________ I _—— |
Threshold Determiner Component 232 :
First Threshold 234 [-; Second Threshold 236 |
| e ———————————————————————— T e e " — — — — -
Compression Disabling Component 240 Compression Enabling Component 244
Disable Period 242 | I Enable Period 246 |
________ | e
e RN
~
~ - ~ -~
_____ ~_ _ A
[Uncompressed Data | [Compressed Data Flow | |

| Flow 214 R

| 212

ve€ Old

Ol ¢ uoissaldwos JO |OA9)
alenjeAs o}

US 9,351,195 B2

Sheet 3 of 16

May 24, 2016

U.S. Patent

ove l./

suny jossaidwo)

y 2

pejqeud ng ‘pessaldwooun pajgeuy
uoissaidwo) Juas peojhed pajgesiq uoissasdwo) uoissaidwo) -
(X=X = (X=X %4
gLz —¥ N ax\rxvl/lm& :\er >x ¥ 8iz supep
awil 7 ' Y ' N Ol ploysaldyl
- (LA)
lllllllllllllllllllllllllllllllllllll o¢e
s|geus
llllllllllllllllllllllllllllll 0} ploysaiyL
— — ~— (2A)
oLz Y 9z
uoissaudwo)
1O [8AaT]
ollollwll oll vl il ol|lwl|olloil v!l|lollTllvllT]|l Bl ®|]|T|| T
~llzll=llzllzallz2lz2HZl 2122 ZNEFZHENEEF|EFIHE|E
N N N N N N N N N - — - - — — LN — - —
(o] ~l (@] (@)] E>S w N — (w] <© 0] -~ » [6)] E-N w N - (@] w O_‘N

00¢ I\

US 9,351,195 B2

Sheet 4 of 16

May 24, 2016

U.S. Patent

g¢ ‘Old
9ic co_MMM“,ﬂ_“MAMo%o&_gm_ 912 uoissaidwoo J0 [aAS] ,
44 1144
e ajen|ens o) 4 -
sun Jossaidwod v\\l sunJ Jossaidwo)
g ‘pessasduiooun peigesid Inq ‘pessesdwooun Pajgesiq Polqeu3
jues Um0_>wn_ uoissaldwon Juss UGO;GH_ CO_mmO.._QEOO CO_wwG‘.QEOO
(X =X) oLz (z2) @X = X) o1z (12) (X =X) oz P
A A A A A a|gesip
awil] 4 N ' Yo h'd N\ 01 ploysaiy
- \ (A
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 9¢C
s|qeus
|||||||||||||||||||||||||||||||||| e _ _L__O1ploysaiyy
= [S—(2N)
9i¢ <co_mmmEEoo
JO [one
vl ol ollol{oll Tl 0|l zll =il ||zl elizllzllz
zllzallzzl2112ll211z11Z212lZ211&21|Z211ZZ{&Z||Z||F]|| &
SHUNUSHISHRIBHNIRIS| =l 3||al|al|x||a||S||3]||o
0z

z0g 1\\

U.S. Patent

May 24, 2016

Sheet 5 of 16

US 9,351,195 B2

350
ren

Applying, via a compressor, a
compression algorithm to a
data flow

<
-

\4

Evaluating a level of
compression of the data flow
resulting from the applying of

the compression algorithm

Y ~354

Determining when the level of
compression of the data flow
is below a first threshold

Y 355

Disabling compression of the
data flow when the level of
compression is below the first
threshold

Transmitting the data flow as
an uncompressed data flow

)\ 357

Determining when the level of
compression of the data flow
is above a second threshold

Y 358

Enabling compression of the
data flow when the level of
compression is above the

second threshold

Transmitting the data flow as
a compressed data flow

s
AN
4 N
Jls N

7
/7 level of ~

A
\ threshold ,
N\ 2 ,I

N H ’
~
Ay /l
v

~. above first -

U.S. Patent May 24, 2016 Sheet 6 of 16 US 9,351,195 B2

- 400

Receive multiple data flows for
compression, wherein each of the
multiple data flows includes a plurality of | ~_ 402
data packets, with each data packet
having a data packet header and a
payload

Determine a compression state for each |- 404
of the multiple data flows

Y

Perform a first compression algorithm on
each of the multiple data flows
determined to have a compression state
set to a do-not-compress state, wherein [~ 406
the compression algorithm includes
compressing the data packet header of
each data packet without compressing
the payload of each data packet

Fig. 5A

US 9,351,195 B2

Sheet 7 of 16

May 24, 2016

U.S. Patent

gs ‘bl

184

ployssiyy
salsies
uo|ssasdwod
C |9A3| Jayiaym
aulweeg

ploysaiy)

ey ~

uolssaidwon
10 |9A8] 8lepdn

A

0ty

Bunssy .

pioysaiu}

A

10v

saysljes
soyshes > uoissaiduwiod
A uopeInp oM /Ty N 0 [OAB] JOUIOUM
suiwusieq suI)R(
Sy .
145%
uolssaidwod
> ssa1dwon-JIoN-0Q
10 [9A9] 91epdn
A
484 J Ly k
y uoissaidwod A > ssal1dwio) _
auwIale(N -
50¥ 30V
uoissauduwiod 104
10F ~ smoy ejep sjdijnw aARoey

U.S. Patent May 24, 2016 Sheet 8 of 16 US 9,351,195 B2

420
K’_

Compress State 316

426

Fig. 6A

Do-not-Compress State 318

Testing State 314

424

US 9,351,195 B2

Sheet 9 of 16

May 24, 2016

U.S. Patent

g9 ‘bi4

i sl

)44

A

0Gt

\

pric

o8lE

oLe

A2

US 9,351,195 B2

Sheet 10 of 16

May 24, 2016

U.S. Patent

09 ‘b4
Py oWl |
-
Alvmvlv _A...Iomvlllnv_ ,AIEVIJ
I | | | | |
glLe \ aglLe \ mmrm\
pPyiLE \ oim\ avle 23 A A%
egLg \»
ZSY .\;

vy SElS

U.S. Patent

May 24, 2016 Sheet 11 of 16

US 9,351,195 B2

COMPUTER DEVICE
580

PROCESSOR 582

MEMORY 584

COMM. COMPONENT 587

|
|
|
r——-—-f-
|
|
|
|
!
|
|
|

DATA STORE 588

USER INTERFACE 589

CALL PROCESSING
COMPONENT
140

FIG. 7

US 9,351,195 B2

Sheet 12 of 16

May 24, 2016

U.S. Patent

Jonieosuel |

-t

8 'Old

142%
\,

N

0L9

009

809
\n

aoeualU|

waysAg Puissaooid

sng

——»

\

wnipsy

ajqepeay-iaindwo)

N

o

©
|

N

909

J0SSB800.1d

A

- - an o -—— -

4
'R R

Ovl usuodwo)
puisseoold (led

¥09 .\

S AU

soepau|
Josn

US 9,351,195 B2

Sheet 13 of 16

May 24, 2016

U.S. Patent

6 "OId

\
MIOMISN 810D
L 2uL | e0s
Ndsl oA e ™
OSINO wawdinbg
INLSd /OSIN — 804 | jasn
oLL - 802
i WISn
ony _
PeTH !
GiL -] / VL.
NN)
i N 0bL
i
Jousa| NS9O NSOS - g0
1
iy ozL - gLL - g0z //
\
>) 00£

U.S. Patent May 24, 2016 Sheet 14 of 16 US 9,351,195 B2

800

806 /‘/

FIG. 10

U.S. Patent May 24, 2016 Sheet 15 of 16 US 9,351,195 B2

-«——Control-plane—» User-plane——»

L3 [RRC r 916

Radio Bearers

| PDCP a 914

008 — X
¥ 912

L2 RLC

Logical Channels 910
[MAC |/

Transport Channels 906
L1 Physical Layer

FIG. 11

US 9,351,195 B2

Sheet 16 of 16

May 24, 2016

U.S. Patent

¢l Oid
8201~ 0801~ 2801~ 9501~ GE0L~, 9e01~, 8801~ 6501~
10889001d 10SS90014
somnog | | Jossanoid o somuwsuery| | soneosy owel 10888901 | s
eleq nwisues | o208y eleq
Jwsues | oA808Y
A A A A
o0 rJ
1088320l1d
\ J A J A A
_ [19|NPaYRS
>._OE®_>_ - JOSSa30.d 10SS320.1d - 1088320l1d . 10889001
Jlgjjonuon |suueyo louueyn /19]104U0D Al_lv
2601~ bt weo’ } — ovor~ } Aioure
0601 u
2501 pE0L ZvoL~
\ 4 y \ L/
Ut 10889200l lossadold 10SS8901d |« 10883004 32IN0
v— w d ®Em._& -t JONID00Y ._mﬁ—_C_mCN.C. < suiel4 - & S
eleq BAIB03Y . = | nwsuesy eleq
an208Y nwisues| |«
2,01~ 0201~ 0901~ p5oL~ 2601~ 0oL~ 0zoL~ A1 4
A7 TN
050l 0L0L

0001

US 9,351,195 B2

1
HANDLING INCOMPRESSIBLE DATA
PACKETS ON MULTIPLE DATA FLOWS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application for patent claims priority to Provi-
sional Application No. 61/881,134 entitled “HANDLING
INCOMPRESSIBLE FLOWS” filed Sep. 23, 2013. It is
noted that the above application is assigned to the assignee
hereof, and that Provisional Application No. 61/881,134 is
hereby expressly incorporated by reference herein.

BACKGROUND

Aspects of the present disclosure relate generally to wire-
less communication systems, and more particularly, to an
apparatus and method for improving the utilization of pro-
cessing resources during compression of packetized data
flows, thereby providing consistent service in a wireless com-
munication system.

Wireless communication networks are widely deployed to
provide various communication services such as telephony,
video, data, messaging, broadcasts, and so on. Such net-
works, which are usually multiple access networks, support
communications for multiple users by sharing the available
network resources. One example of such a network is the
UMTS Terrestrial Radio Access Network (UTRAN). The
UTRAN is the radio access network (RAN) defined as a part
of the Universal Mobile Telecommunications System
(UMTS), a third generation (3G) mobile phone technology
supported by the 3rd Generation Partnership Project 3GPP).
The UMTS, which is the successor to Global System for
Mobile Communications (GSM) technologies, currently sup-
ports various air interface standards, such as Wideband-Code
Division Multiple Access (W-CDMA), Time Division-Code
Division Multiple Access (TD-CDMA), and Time Division-
Synchronous Code Division Multiple Access (TD-SCDMA).
The UMTS also supports enhanced 3G data communications
protocols, such as High Speed Packet Access (HSPA), which
provides higher data transfer speeds and capacity to associ-
ated UMTS networks.

In some wireless communications systems, a compressor
may compress data packets by utilizing a compression algo-
rithm. In some cases, however, the compressor may attempt to
compress data packets from certain flows that may not be
compressible or that may provide little or no gain (e.g., reduc-
tion in packet size) from compression, thereby wasting pro-
cessing resources.

Thus, improving the utilization of processing resources
during compression of packet data flows is desired.

SUMMARY

The following presents a simplified summary of one or
more aspects in order to provide a basic understanding of such
aspects. This summary is not an extensive overview of all
contemplated aspects, and is intended to neither identify key
or critical elements of all aspects nor delineate the scope of
any or all aspects. Its sole purpose is to present some concepts
of'one or more aspects in a simplified form as a prelude to the
more detailed description that is presented later.

In an aspect, a method of compression on multiple data
flows for communication between a user equipment (UE) and
a serving node is described. The method includes receiving
multiple data flows for compression, wherein each of the
multiple data flows includes a plurality of data packets, with

10

15

20

25

30

35

40

45

50

55

60

65

2

each data packet having a data packet header and a payload.
Further, the method includes determining a compression state
for each of the multiple data flows. Moreover, the method
includes performing a first compression algorithm on each of
the multiple data flows determined to have a compression
state set to a do-not-compress state, wherein the first com-
pression algorithm includes compressing the data packet
header of each data packet without compressing the payload
of each data packet.

In another aspect, an apparatus of compression on multiple
data flows for communication between a user equipment
(UE) and a serving node is described. The apparatus includes
a means for receiving multiple data flows for compression,
wherein each of the multiple data flows includes a plurality of
data packets, with each data packet having a data packet
header and a payload. Further, the apparatus includes a means
for determining a compression state for each of the multiple
data flows. Moreover, the apparatus includes a means for
performing a first compression algorithm on each of the mul-
tiple data flows determined to have a compression state set to
a do-not-compress state, wherein the first compression algo-
rithm includes compressing the data packet header of each
data packet without compressing the payload of each data
packet.

In another aspect, an apparatus for compression on mul-
tiple data flows for communication between a user equipment
(UE) and a serving node is described. The apparatus includes
a call processing component configured to receive multiple
data flows for compression, wherein each of the multiple data
flows includes a plurality of data packets, with each data
packethaving a data packet header and a payload. Further, the
apparatus includes a determining component configured to
determine a compression state for each of the multiple data
flows. Moreover, the apparatus includes a compressor com-
ponent configured to perform a first compression algorithm
on each of the multiple data flows determined to have a
compression state set to a do-not-compress state, wherein the
first compression algorithm includes compressing the data
packet header of each data packet without compressing the
payload of each data packet.

In yet another aspect, a non-transitory computer-readable
media executable by an apparatus for wireless communica-
tion for compression on multiple data flows for communica-
tion between a user equipment (UE) and a serving node is
described. The computer-readable media includes code for
receiving multiple data flows for compression, wherein each
of'the multiple data flows includes a plurality of data packets,
with each data packet having a data packet header and a
payload. Further, the computer-readable media includes code
for determining a compression state for each of the multiple
data flows. Moreover, the computer-readable media includes
code for performing a first compression algorithm on each of
the multiple data flows determined to have a compression
state set to a do-not-compress state, wherein the first com-
pression algorithm includes compressing the data packet
header of each data packet without compressing the payload
of each data packet.

These and other aspects of the disclosure will become more
fully understood upon a review of the detailed description,
which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of an aspect of a call pro-
cessing component used in a wireless communication sys-
tem;

US 9,351,195 B2

3

FIG. 2 is a schematic diagram of an aspect of a compressor
component of the call processing component of FIG. 1;

FIG. 3A is a graphical representation of an aspect of call
processing in the wireless communication system of the
present disclosure;

FIG. 3B is a graphical representation of other aspect of call
processing in the wireless communication system of the
present disclosure;

FIG. 4 is a flow diagram of one aspect of a method for call
processing in the wireless communication system of the
present disclosure;

FIGS. 5A and 5B are flow diagrams illustrating exemplary
methods for call processing in a wireless communication
system,

FIGS. 6 A-6C are conceptual diagrams illustrating aspects
of the present disclosure;

FIG. 7 is a block diagram of one aspect of additional
components of a computer device implementing a call pro-
cessing component according to the present disclosure;

FIG. 8 is a block diagram of an aspect of a hardware
implementation for an apparatus employing a processing sys-
tem to perform the functions described herein;

FIG. 9 is a block diagram conceptually illustrating an
example of a telecommunications system including a UE
configured to perform the functions described herein;

FIG. 10 is a conceptual diagram illustrating an example of
anaccess network for use with a UE configured to perform the
functions described herein;

FIG. 11 is a conceptual diagram illustrating an example of
a radio protocol architecture for the user and control planes
for a base station and/or a UE configured to perform the
functions described herein; and

FIG. 12 is a block diagram conceptually illustrating an
example of a Node B in communication with a UE in a
telecommunications system configured to perform the func-
tions described herein.

DETAILED DESCRIPTION

The detailed description set forth below in connection with
the appended drawings is intended as a description of various
configurations and is not intended to represent the only con-
figurations in which the concepts described herein may be
practiced. The detailed description includes specific details
for the purpose of providing a thorough understanding of
various concepts. However, it will be apparent to those skilled
in the art that these concepts may be practiced without these
specific details. In some instances, well known structures and
components are shown in block diagram form in order to
avoid obscuring such concepts.

As discussed above, a compressor may be used to com-
press data packets in a data packet flow by taking advantage of
redundancies across the data packets. In doing so, the com-
pressor may attempt to compress data packets from certain
flows that may be considered incompressible. As used herein,
the term “incompressible” when used relative to a data packet
flow means not able to be compressed or providing less than
a threshold amount of gain (e.g., reduction in packet size)
from compression. Examples of types of packet data flows
that may be considered incompressible include, but are not
limited to, packet data flows carrying data such as encrypted
traffic or video. As such, the compressor ends up spending
processing resources attempting to compress data packets
that provide little or no reduction in packet size. Likewise a
de-compressor may also waste processing resources on
attempting to decompress data packets that have not been
reduced in size.

10

15

20

25

30

35

40

45

50

55

60

65

4

The present aspects generally relate to efficiently handling
incompressible data packets on multiple data flows. Specifi-
cally, the present apparatus and methods track each data flow
and have states for each flow, where the states specify if
compression is on or off.

Accordingly, in some aspects, the present methods and
apparatuses may provide an efficient solution, as compared to
current solutions, by tracking incompressible data packets on
multiple data flows in a wireless communication network in
order to efficiently compress data packets.

Referring to FIG. 1, in one aspect, a wireless communica-
tion system 100 is configured to facilitate transmitting vast
amount of data from a mobile device to a network, or vice
versa. Wireless communication system 100 includes at least
one UE (user equipment) 114 that may communicate wire-
lessly with one or more networks 112 via serving nodes,
including, but not limited to, wireless serving node 116, over
one or more wireless link 125. The one or more wireless link
125 may include, but are not limited to, signaling radio bear-
ers and/or data radio bearers. Wireless serving node 116 may
be configured to transmit one or more signals 123 to UE 114
over the one or more wireless link 125, and/or UE 114 may
transmit one or more signals 124 to wireless serving node
116. In an aspect, signal 123 and signal 124 may include, but
are not limited to, one or more messages, such as transmitting
a data packet or a packet data flow from the UE 114 to the
network 112 via wireless serving node 116.

In an aspect, UE 114 may include a call processing com-
ponent 140, which may be configured to transmit data to the
wireless serving node 116 over wireless link 125. For
example, call processing component 140 may transmit data
packets from one or more packet data flows corresponding to
one or more applications executing on UE 114. For instance,
the one or more applications may include one or more of a
web browser application, a data call application, and a voice
call application.

According to the present aspects, call processing compo-
nent 140 may include a compressor component 145 config-
ured to selectively compress or not compress one or more
packet data flows based on a level of compression that may be
achieved. In particular, compressor component 145 may be
configured with respective threshold levels of compression
that dictate enabling or disabling compression of one or more
packet data flows. Moreover, in an aspect, compressor com-
ponent 145 may be configured with one or more disable
periods during which compression in disabled. In the aspect
of'more than one disable period, each disable period may have
a different duration, or each disable period may have a dura-
tion based on a number of consecutive times the level of
compression has failed to meet the respective threshold to
enable compression. For example, in one aspect that should
not be construed as limiting, compressor component 145 may
be configured with the respective enable and disable thresh-
olds, and the respective disable periods, in order to improve
the efficiency of use of the processing resources for perform-
ing compression. For instance, rather than turning compres-
sor component 145 on and off at every opportunity for a small
compression gain, the present aspects may configure com-
pressor component 145 to avoid transmitting a compressed
data flow until a sufficient compression gain may be achieved,
or until compressor component 145 may enable compression
for a sufficient period of time until reaching the disable
threshold to justify use of the processing resources for com-
pression.

In an aspect, for example, call processing component 140
and compressor component 145 of UE 114 may be an entity
operating at a protocol layer in a protocol stack of UE 114. An

US 9,351,195 B2

5

example protocol layer that may include an entity operating
the present aspects may include, but is not limited to, a Packet
Data Convergence Protocol (PDCP) layer, however, as noted,
the present aspects may operate at higher or lower layers of
the protocol stack.

UE 114 may include a mobile apparatus and may be
referred to as such throughout the present disclosure. Such a
mobile apparatus or UE 114 may also be referred to by those
skilled in the art as a mobile station, a subscriber station, a
mobile unit, a subscriber unit, a wireless unit, a remote unit, a
mobile device, a wireless device, a wireless communications
device, aremote device, amobile subscriber station, an access
terminal, a mobile terminal, a wireless terminal, a remote
terminal, a handset, a terminal, a user agent, a mobile client,
a client, or some other suitable terminology.

Additionally, the one or more wireless nodes, including,
but not limited to, wireless serving node 116 of wireless
communication system 100, may include one or more of any
type of network component, such as an access point, includ-
ing a base station or node B, a relay, a peer-to-peer device, an
authentication, authorization and accounting (AAA) server, a
mobile switching center (MSC), a radio network controller
(RNC), etc. In a further aspect, the one or more wireless
serving nodes of wireless communication system 100 may
include one or more small base stations, such as, but not
limited to a femtocell, picocell, microcell, or any other small
base station.

Referring to FIG. 2, in one aspect of the present apparatus
and method, compressor component 145 may include a plu-
rality of sub-components for performing the functions of the
present aspects in order to selectively generate a compressed
data flow 212 or an uncompressed data flow 214 from a
received data flow 210 based on a level of compression 216
that may be achieved.

In an aspect, compressor component 145 may be config-
ured to include, among other things, a compressor 220
capable of applying a compression algorithm 222 to one or
more data flows 210. For example, after compressor compo-
nent 145 receives data flow 210, e.g., carrying data or signal-
ing corresponding to an application such as a browser execut-
ing on UE 114 (FIG. 1), from a higher protocol layer,
compressor 220 is configured to apply compression algo-
rithm 222 to at least a portion of data flow 210 to generate a
compressed data flow 212 having an amount of data that may
be smaller than or equal to an amount of data of the corre-
sponding portion of the original data flow 210 (which may be
referred to as uncompressed data flow 214). In an example,
compression algorithm 222 may be any algorithm capable of
reducing a size (e.g., in bits or bytes) of a set of data packets,
where, in one aspect, the reduction in size may be in the
header (e.g., by eliminating repeated header information). It
should be noted, however, that in other alternative or addi-
tional aspects, compression algorithm 222 may also operate
to reduce a size of payload information in a set of data pack-
ets. Further, it should be noted that compressor 220 may
generate compressed data flow 212 for only certain portions
of data flow 210, e.g., at a number of intervals, which may
include a configured number of data packets, where the inter-
vals or number of data packets may vary depending on
whether compressor component 145 has enabled or disabled
compressor 220 for actually transmitting data flow 210 (as
opposed to generating compressed data flow 212 for evalua-
tion purposes). Thus, generation of compressed data flow 212
may be only for evaluation purposes, as explained below, and
compressor component 145 may transmit compressed data
flow 212 or uncompressed data flow 214 (e.g., original data
flow 210) based on the operation of the present aspects.

15

25

30

35

40

45

55

6

It should be noted that compressor component 145 may
identify data flows 210 based on source and/or destination
address or port information. In an example, which should not
be construed as limiting, compressor component 145 may
identify data flows 210 based on one of or any combination of
transmission control protocol (TCP) source port, TCP desti-
nation port, IP source address, and IP destination address for
TCPbased packets, and user datagram protocol (UDP) source
port, UDP destination port, IP source address, and IP desti-
nation address for UDP based packets.

Further, compressor component 145 may be configured to
include an evaluating component 230 capable of determining
level of compression 216 of compressed data flow 212 result-
ing from execution of compression algorithm 222 on data
flow 210, e.g., uncompressed data flow 214. For example, in
an aspect, evaluating component 230 is configured to com-
pare a size of compressed data flow 212 relative to a size of the
corresponding portion of data flow 210 (or, in other words,
uncompressed data flow 214) and define a metric or value
related to the difference in size as level of compression 216 of
data flow 210. In an alternative or additional aspect, evaluat-
ing component 230 is configured to define a metric for level of
compression 216 based on a number of packets that are com-
pressible at least a defined amount, out of a threshold number
of packets. In an aspect, evaluating component 230 keeps
track of level of compression 216 of data flow 210 for an
evaluation period 218 (e.g., referred to below as X, where X
is a positive number), which may include a configured num-
ber of data packets, and/or at intervals, where the intervals or
number of data packets may vary depending on whether com-
pressor component 145 has enabled (e.g., X=X1) or disabled
(e.g., X=X2) compressor 220 for actually transmitting data
flow 210 (as opposed to generating compressed data flow 212
for evaluation purposes). For example, in an aspect, evalua-
tion period 218 may be a threshold number of past packets,
and upon receiving a new packet for data flow 210, evaluating
component 230 may evaluate level of compression 216 for
evaluation period 218, e.g., the threshold number of past
packets in data flow 210, in order to determine whether or not
to compress the new packet.

In an aspect, level of compression 216 may be equivalent to
one minus a sum of a payload size of the data flow, after
compression, of a threshold number of past data packets (e.g.,
evaluation period 218, also referred to below as X, where X is
apositive number) in the data flow over the sum of a payload
size of the data flow, before compression, of the threshold
number of past data packets in the data flow, as represented in
equation 1 below. For example, if data flow 210 includes
packets having sequence numbers 10 through 28, and X=3,
then level of compression 216 in an initial evaluation period
218 may be computed for data packets having sequence num-
bers 10,11, and 12. As noted above, the value of the threshold
number of past packets (e.g., X) in the data flow of equation
1 may be dependent on whether compression is enabled (e.g.,
X=X1) or disabled (e.g., X=X2), as discussed below.

In another aspect, evaluating component 230 may include
a threshold determiner component 232 configured to deter-
mine whether level of compression 216 meets one or more
thresholds having values respectively configured to selec-
tively disable and enable compression of data flow 210. For
example, evaluating component 230 and/or threshold deter-
miner component 232 may include a first threshold 234 (e.g.,
Y1 in the below equations) for disabling compression and a
second threshold 236 (e.g., Y2 in the below equations) for
enabling compression, where first threshold 234 has a value
different from, and less than, second threshold 236. For
example, in an aspect, threshold determiner component 232

US 9,351,195 B2

7

compares the value of compression 216 to the value of first
threshold 234 and the value of second threshold 236, e.g. to
determine if level of compression 216 is below first threshold
234 to trigger disabling of compression or above second
threshold 236 to trigger enabling of compression. First
threshold 234 and second threshold 236 may be fixed or
variable values.

In yet another aspect, compressor component 145 may be
configured to include a compression enabling component 244
capable of enabling compression of data flow 210 for trans-
mission when level of compression 216 increases above sec-
ond threshold 236. For example, after threshold determiner
component 232 determines that the level of compression 216
has increased above second threshold 236, then compression
enabling component 244 enables compression when trans-
mitting data flow 210. In other words, in this aspect, com-
pressor component 145 transmits data flow 210 as com-
pressed data flow 212 when level of compression 216 meets
second threshold 236, e.g., when sufficient gains can be
achieved via compressing data flow 210 relative to the cost of
resources used to perform the compression. In an aspect,
compression enabling component 244 may include one or
more enabling periods 246 that identify an amount of time or
a number of packets for which compression will be enabled.
The one or more enabling periods 246 may be the same as, or
different from, evaluation period 218. In other words, com-
pression enabling component 244 may enable compression as
often as level of compression 216 is evaluated by evaluating
component 230, which may be on a packet-by-packet basis,
or compression enabling component 244 may enable com-
pression for a set period of time or a set number of packets
without an evaluation of level of compression 216. As such, in
some cases, compression enabling component 244 may con-
tinuously trigger compression as long as evaluating compo-
nent 230 determines that level of compression 216 meets
second threshold 236 or is greater than first threshold 234,
depending on whether compression is currently disabled or
enabled.

In another aspect, compressor component 145 may be con-
figured to include a compression disabling component 240
capable of disabling compression of data flow 210 for trans-
mission when level of compression 216 decreases below first
threshold 234. For example, after threshold determiner com-
ponent 232 determines that the level of compression 216 has
fallen below first threshold 234, then compression disabling
component 240 disables compression when transmitting data
flow 210. In other words, in this aspect, compressor compo-
nent 145 transmits data flow 210 as uncompressed data flow
214 when level of compression 216 meets first threshold 234,
e.g., when sufficient gains cannot be achieved via compress-
ing data flow 210 relative to the cost of resources used to
perform the compression. Additionally, compression dis-
abling component 240 may include one or more disable peri-
ods 242 (referred to as Z1 and 72 below, where Z is a positive
number) which define time periods or a number of packets for
which compression should be disabled. In an aspect, com-
pression disabling component 240 may select one of the one
or more disable periods 242, for example, depending on a
number of consecutive times level of compression 216 meets
first threshold 234. In other words, the one or more disable
periods 242 may include a plurality of disable periods each
having a different time period or number of packets for which
compression is disabled. For instance, when level of com-
pression 216 meets first threshold 234 a first number of con-
secutive times, then compression disabling component 240
may select a first one of the one or more disable periods 242.
Similarly, for instance, when level of compression 216 meets

10

15

20

25

30

35

40

45

50

55

60

65

8

first threshold 234 a second number of consecutive times,
then compression disabling component 240 may select a sec-
ond one of the one or more disable periods 242, where the
second one of the one or more disable periods 242 has a
different value than a first one of the one or more disable
periods 242. Such a different value of the second one of the
one or more disable periods 242 may, in some cases, be a
higher value, while in other cases the different value may be
alower value. For instance, the second one of'the one or more
disable periods 242 may be a higher value, for example, when
it is expected that a larger number of subsequent packets may
be needed before a sufficient gain can be achieved via com-
pression.

In an alternative aspect, call processing component 140 of
UE 114 (FIG. 1) may operate to receive multiple data flows
210 and compress a transmission data packet that is from one
of the multiple data flows 210 to form compressed data flow
212, which is sent to call processing component 150 of wire-
less serving node 116 or network 112 (FIG. 1). In some
instances, a data packet may be a data packet that is transmit-
ted among a plurality of data packets in one of the multiple
data flows 210. Call processing component 140 may maintain
information regarding each of the multiple data flows 210 in
order to efficiently handle compression operations on the data
packets of each of the multiple data flows 210.

Specifically, in an aspect and referring back to FIG. 2, state
component 148, located within call processing component
140 of UE 114, may track or otherwise maintain the compres-
sion state 312 for each of the multiple data flows 210, a level
of compression of data flow 216 for each of the multiple data
flows 210, and a packet indicator 336. For instance, as each of
the multiple data flows 210 is received, call processing com-
ponent 140 may be configured to cause state component 148
to determine compression state 312, level of compression of
data flow 216, and packet indicator 336. In some instances,
the compression state 312 may correspond to whether com-
pressor 220 is configured to compress packets in a particular
data flow 210. The level of compression of data flow 216 for
each of the multiple data flows 210 may correspond to an
amount (e.g., packet length) that the original data packet was
reduced to. The packet indicator 336 may indicate the last
time a data packet belonging to a data flow 210 was seen.

For example, state component 148 may include a determin-
ing component 310 for determining a compression state 312
for each of the multiple data flows 210. For instance, com-
pression state 312 may comprise a testing state 314, compress
state 316, and do-not-compress state 318. In an aspect, testing
state 314 corresponds to a state where compressor component
145 attempts to compress data packets of each of the multiple
data flows 210 for a limited duration in order to measure the
level of compression of data flow 216. During compress state
316, compressor component 145 may configure compressor
220 to compress data packets of each of the multiple data
flows 210 until the level of compression of data flow 216 fails
to satisfy a first threshold 234. In do-not-compress state 318,
compressor 220 may either not compress the data packets of
each of the multiple data flows 210 or only compress the data
packet headers of the data packets of each of the multiple data
flows 210.

In particular, in an aspect, even though compressor com-
ponent 145 may be operating in do-not-compress state 318,
compressor component 145 may be configured to perform a
compression algorithm 222 for each of the multiple data flows
210 based on an indication from state component 148. For
example, compressor component 145 may be configured to
enable compression for a data packet header of a data packet
of'each of the multiple data flows 210. Additionally, compres-

US 9,351,195 B2

9

sor component 145 may disable compression for a payload of
the data packet of each of the multiple data flows 210. In other
words, data packets transmitted on a particular data flow 210
that has a compression state 312 set to a do-not-compress
state 318 may have header-only compression enabled. Fur-
ther, during the compression algorithm 222, compressor
component 145 may update a memory (e.g., memory 584 in
FIG. 7) with the data packet header of the data packet belong-
ing to one of the multiple data flows 210. Compressor 220
may be configured to perform a plurality of compression
algorithms 222, each of which correspond with one or more
multiple data flows 210.

In another aspect, state component 148 may include updat-
ing component 320, which may be configured to maintain
level of compression of data flow 216 for each of the multiple
data flows 210 corresponding to a level of compression. The
level of compression of data flow 216 may also correspond to
afilter compression percentage that is calculated based on the
size (e.g., length) of the compressed data packet in relation to
the size of the original uncompressed data packet. In some
instances, the filter compression percentage may be a ratio of
the size of the compressed data packet and the size of the
original uncompressed data packet. In other instances, the
level of compression of data flow 216 may be calculated
based on the level of compression of the payload of each data
packet. For example, during the do-not-compress state 318,
evaluating component 230 may set the level of compression
of data flow 216 for each of the multiple data flows 210 to a
default value (e.g., a value of zero) to indicate that no com-
pression is occurring, or to some other value that represents an
amount of compression that is being obtained. In some
instances, evaluating component 230 may not update the level
of compression of data flow 216 during do-not-compress state
318 due to the payload not being compressed in the do-not-
compress state 318.

On the other hand, during the testing state 314, compressor
component 145 may perform a compression algorithm 222 on
each of the multiple data flows 210 set to the testing state 314,
wherein evaluating component 230 updates level of compres-
sion of data flow 216 on each of the multiple data flows 210.
For example, evaluating component 230 may initialize the
level of compression of data flow 216 to a default value (e.g.,
a value of zero). Compressor 220 may then compress one or
more data packets of each of the multiple data flows 210 set to
the testing state 314. As each data packet is being compressed,
evaluating component 230 may update the level of compres-
sion of data flow 216 on each of the multiple data flows 210 to
represent the level of compression for each data packet, or
some mathematical function of the level of compression for
multiple packets. In some instances, the level of compression
of data flow 216 may correspond to a filter compression
percentage that is calculated based on the size (e.g., length) of
the compressed data packet in relation to the size of the
original uncompressed data packet. In some instances, the
filter compression percentage may be a ratio of the size of the
compressed data packet and the size of the original uncom-
pressed data packet. In other instances, the level of compres-
sion of data flow 216 may be calculated based on the level of
compression of the payload of each data packet. Then, evalu-
ating component 230 may be configured to compare the level
of compression of data flow 216 on each of the multiple data
flows 210 with a first threshold 234. In some instances, first
threshold 234 may be predetermined or may be modifiable. In
other instances, evaluating component 230 may compare the
level of compression of data flow 216 on each of the multiple
data flows 210 with the first threshold 234 when a threshold
number of data packets have been compressed.

10

15

20

25

30

35

40

45

50

55

60

65

10

As such, evaluating component 230 may be configured to
inform determining component 310 to change the compres-
sion state 312 on each of the multiple data flows 210 based on
the comparison of the level of compression of data flow 216
on each of the multiple data flows 210 and the first threshold
234. For example, if the level of compression of data flow 216
on each ofthe multiple data flows 210 satisfies the first thresh-
o0ld 234 during the testing state 314 then determining compo-
nent 310 may change the compression state 312 on each of the
multiple data flows 210 to the compress state 316. As a result,
compressor 220 may continue to compress data packets for a
respective one of the multiple data flows 210 that remain in
the compress state 316. In particular, compressor 220 may
compress one or more data packets of one of the multiple data
flows 210, and the evaluating component 230 may update the
level of compression of data flow 216 on each of the multiple
data flows 210 as each of their respective data packets are
compressed.

During the compress state 316, evaluating component 230
may continuously or periodically compare the level of com-
pression of data flow 216 on each of the multiple data flows
210 with the first threshold 234. Determining component 310
may then determine whether to change the compression state
312 from compress state 316 to the do-not-compress state 318
or to maintain the compress state 316 on each of the multiple
data flows 210. In an instance, determining component 310
may change the compression state 312 to the do-not-com-
press state 318 when the level of compression of data flow 216
on any of the multiple data flows 210 does not satisfy the first
threshold 234. In another instance, compressor 220 may con-
tinue to compress data packets of each of the multiple data
flows 210 set to the compress state 316 when each of their
respective level of compression of data flow 216 satisfies the
first threshold 234.

In another example, if the level of compression of data flow
216 on any of the multiple data flows 210 fails to satisfy the
first threshold 234 during the testing state 314, then determin-
ing component 310 may change their respective compression
state 312 back to the do-not-compress state 318. As a result,
compressor 220 may perform a compression algorithm 222
where only the data packet headers of the data packets of each
of the multiple data flows 210 are compressed and the pay-
loads of the data packets are left uncompressed.

Further, state component 148 may include timer compo-
nent 330, which may be configured to maintain the duration
332 for each of the multiple data flows 210 in which com-
pressor 220 performs the compression algorithm 222 in the
do-not-compress state 318. For example, timer component
330 may be configured to determine duration 332 corre-
sponding to an amount of time the compression state 312 is
set to the do-not-compress state 318 or a number of data
packets compressed during the do-not-compress state 318.
Timer component 330 may maintain a duration threshold 334
for each of the multiple data flows 210, wherein the timer
component 330 uses the duration threshold 334 to determine
whether to change the compression state 312 on each of the
multiple data flows 210. In an instance, timer component 330
may determine that duration 332 satisfies the duration thresh-
old 334 for any of the multiple data flows 210. As a result,
compressor component 145 may change the compression
state 312 to testing state 314 on the respective multiple data
flows 210, where compressor 220 performs a compression
algorithm for each of the multiple data flows 210.

In another instance, timer component 330 may modify
duration threshold 334 based on whether the level of com-
pression of data flow 216 fails to satisty the first threshold 234
during the testing state 314. If the level of compression of data

US 9,351,195 B2

11

flow 216 on each of the multiple data flows 210 fails to satisfy
the first threshold 234 during the testing state 314, timer
component 330 may increase the duration threshold 334. For
example, timer component 330 may increase the duration
threshold 334 linearly or exponential for each subsequent
failure. Therefore, as duration 332 increases in value, state
component 148 maintains in the do-not-compress state 318
without switching to the testing state 314 in order to prevent
unnecessary performance of a compression algorithm 222
since the level of compression of data flow 216 of the particu-
lar data flow has repeatedly failed to satisty the first threshold
234. On the other hand, when the compression state 312
changes from the testing state 314 to the compress state 316,
timer component 330 may reset duration threshold 334 back
its initial duration threshold value. Additionally, each time the
compression state 312 changes to the do-not-compress state
318 on each of the multiple data flows 210, timer component
330 resets the duration 332 back to a default value (e.g., a
value of zero).

In an alternative or additional aspect, although discussed
above with reference to UE 114, the above noted functionally
of call processing component 140 and compressor compo-
nent 145 may be included in wireless serving node 116 and/or
network 112. For example, but not limited hereto, call pro-
cessing component 140 and compressor component 145 may
be hardware mounted within network 112, software or com-
puter readable media and/or firmware stored within a
memory or processor of wireless serving node 116 and/or
network 112.

Referring to FIG. 3A, a graphical representation 300 ofone
aspect of the evaluation of level of compression 216 of data
flow 210 and the corresponding enabling or disabling of
compression when transmitting data flow 210 illustrates the
operation of call processing component 140 and compressor
component 145. As discussed above, compressor 220 com-
presses portions of data flow 210, during at least evaluation
period 218, such that evaluating component 230 keeps track
of level of compression 216 so that threshold determiner
component 232 may trigger compression enabling compo-
nent 244 or compression disabling component 240 to allow
compressor component 145 to transmit compressed data flow
212 or uncompressed data flow 214.

In the example of FIG. 3A, level of compression 216 is
equivalent to one minus the sum of a payload size of the data
flow, after compression, over the sum of the payload size of
the data flow, before compression, as represented in equation
1 below.

level of compression = Equation (1)

L total amount of data payload after compression
total amount of data

payload before compression

where, the total amount of data payload after compression is
the sum of the payload size, after compression, of the past X
data packets in the data flow, e.g., the threshold number of
past packets or the number of packets associated with evalu-
ation period 218. The total amount of data payload before
compression is the sum of the payload size, before compres-
sion, of the past X data packets in the data flow.

As discussed above, the value of X depends on whether
compression is enabled or disabled. For example, when com-
pression is enabled by threshold determiner component 232
triggering compression enabling component 244, X may be

20

30

40

45

50

55

12

setto X1, and when compression disabled by threshold deter-
miner component 232 triggering compression disabling com-
ponent 240, X may be set to X2. Both 1 and X2 may be fixed
or variable values.

X1 and X2 may be set to different values, or in some cases,
X1 and X2 may be set to the same value. For instance, in FI1G.
3A, X1 is set to equal three and X2 is also set to equal three,
according to one example. However, X1 and X2 may be set to
any other value, based on the desired level of enabling or
disabling of compression.

When level of compression 216 tracked by evaluating com-
ponent 230, decreases below a threshold Y1 (e.g., first or
lower threshold 234), as determined by threshold determiner
component 232, compression disabling component 240 dis-
ables compression for data flow, 210 for the next Z1 packets,
e.g., where Z1 corresponds to one of the one or more disable
periods 242. The value of Z1 may be fixed or variable.

For example, in FIG. 3A, after data packet 13 of data flow
210, threshold determiner component 232 determines that
level of compression 216 has decreased below threshold Y1,
e.g., first threshold 234. Thereafter, compression disabling
component 240 disables compression for data packet 14
though data packet 21 (e.g., Z1 packets or disable period 242)
of data flow 210.

After the uncompressed Z1 data packets have been trans-
mitted, compressor 220 performs compression on data flow
210 for evaluation period 218, e.g., X2 data packets or data
packets 22 through 24 in this example, and at the same time,
compressor component 145 transmits the corresponding X2
data packets uncompressed, e.g., as uncompressed data flow
214. Additionally, evaluating component 230 evaluates level
of compression 216 of the data packets associated with evalu-
ation period 218, e.g., the X2 data packets of data flow 210
following the transmission of uncompressed 71 packets.

If level of compression 216 exceeds threshold Y2 (e.g.,
second or higher threshold 236), as determined by threshold
determiner component 232, then compression enabling com-
ponent 244 enables compression and compressor component
145 starts transmitting the data packets of the data flow 210,
e.g., packets 25 through 28 in this example, as compressed
data packets or compressed data flow 212.

Referring to FIG. 3B, in an aspect similar to FIG. 3A, a
graphical representation 302 of another aspect of the evalua-
tion of level of compression 216 of data flow 210 and the
corresponding enabling or disabling of compression when
transmitting data flow 210 illustrates the operation of call
processing component 140 and compressor component 145
when level of compression 216 does not exceed second
threshold Y2 after disable period 242 (e.g., Z1) and subse-
quent evaluation period 218 (e.g., X2). In this case, compres-
sor component 145 may initiate another disable period 242
(e.g., 72), which may have a different length than the first
disable period. Then, subsequent to the second disable period
242, compressor component 145 performs evaluation of level
of compression 216 for evaluation period 218 (e.g., X2 in this
example), and enables or disables compression according to
the above rules.

In the aspect of FIG. 3B, after determining that level of
compression 216 is still below threshold Y1, the number of
data packets for which compression is disabled (22 or disable
period 242) can be set depending how many such consecutive
evaluations of level of compression 216 have failed to exceed
threshold Y1. For example, in one aspect, the longer level of
compression 216 stays below Y2, the larger the value of 72
becomes.

Itshould be noted that though the values of X1, X2,Y1,Y2,
71, and 72 may be fixed or variable, and the values may also

US 9,351,195 B2

13

be signaled from the radio network or core network through
radio resource control (RRC) signaling and/or or other mes-
sages.

It should be noted that level of compression 216 may be
computed according to a variety of formulas. In another
aspect, for example, level of compression 216 may be defined
by the following equation:

level of compression= Equation 2

Total amount of data payload before compression—

Total amount of data payload after compression
X

where X is the threshold number of past data packets over
which the level of compression is computed.

In yet another aspect, level of compression 216 may be
defined by the following equation:

level of compression= Equation 3

Number of data packets that are compresible
X

where the number of packets that are compressible is the
number of packets out of the threshold number of past data
packets, e.g., X, for which the payload size after compression
is less than a K times the payload size before compression,
where K is a constant value that may be determined based on
the specific application.

In yet another aspect, level of compression 216 may be
defined by the following equation:

level of compression= Equation 4

Number of data that are compressible
X

where the number of packets that are compressible is the
number of packets out of the threshold number of past data
packets, e.g., X, for which the payload size after compression
is less than the payload size before compression minus K,
where K is a constant value that may be determined based on
the specific application.

Moreover, alternative definitions for level of compression
216 may be signaled by the radio or core network.

Referring to FIG. 4, in one aspect, a method 350 of wireless
communication may be executed, for example, by call pro-
cessing component 140 and/or compressor component 145 of
FIGS. 1 and 2 for selectively enabling or disabling compres-
sion of a data flow based on a level of compression that may
be achieved.

At 352, method 350 may include applying, via a compres-
sor, a compression algorithm to a data flow. As discussed
above with reference to FIGS. 1,2, 3A and 3B, call processing
component 140 and/or compressor component 145 of UE 114
or wireless serving node 116 or network 112 is configured for
applying compression algorithm 222 onto data flow 210 at
compressor 220. For example, after UE 114 receives data
flow 210 from a higher protocol layer or application, com-
pressor 220 is configured to execute compression algorithm
222 to generate compressed data flow 212 from data flow 210.
The information in compressed data flow 212 may have a size

10

15

20

25

35

40

45

50

55

60

65

14

that is less than or equal to a size of the information in data
flow 210, which may also be referred to as uncompressed data
flow 214.

As discussed above, one or more data flow 210 may be
identified based on one or based on a combination of a trans-
mission control protocol (TCP) source port, a TCP destina-
tion port, an IP source address, or an IP destination address for
TCP based packets, and a user datagram protocol (UDP)
source port, a UDP destination port, an IP source address, and
an [P destination address for UDP based packets.

At 353, method 350 may include evaluating a level of
compression of the data flow resulting from the applying of
the compression algorithm. As discussed above with refer-
enceto FIGS. 1, 2, 3A and 3B, call processing component 140
and/or compressor component 145 of UE 114 or wireless
serving node 116 or network 112 is configured for evaluating
level of compression 216 of data flow 210 resulting from
applying of compression algorithm 222 by compressor 220.
For example, compressor component 145 may include evalu-
ating component 230 that is configured to evaluate level of
compression 216 based on a difference in size between com-
pressed data flow 212 and uncompressed data flow 214, or
based on a number of packets that are compressible at least a
defined amount, out of a threshold number of packets. Evalu-
ating component 230 may evaluate level of compression 216
for any number of evaluation periods 218, which may occur
upon receipt of a new packet and which may take into account
athreshold number of past packets, e.g., X number of packets,
which may vary from one value, e.g., X1, when compression
is enabled to another value, e.g., X2, when compression is
disabled, in order to determine level of compression 216.
More specifically, it should be noted that, in some aspects,
level of compression 216 may be evaluated according to
Equations 1-4, discussed above, although level of compres-
sion 216 is not limited to these equations.

At 354, method 350 may include determining when the
level of compression of the data flow is below a first threshold.
As discussed above with reference to FIGS. 1, 2, 3A and 3B,
call processing component 140 and/or compressor compo-
nent 145 of UE 114 or wireless serving node 116 or network
112 is configured for determining when the level of compres-
sion of the data flow is below a first threshold. For example,
for each evaluation period 218, compressor component 145
may execute threshold determiner component 232 to deter-
mine when level of compression 216 of data flow 210 is below
first or lower threshold 234 or Y1. For instance, threshold
determiner component 232 may determine that level of com-
pression 216 of data flow 210 is below first threshold 234 or
Y1 during an evaluation when compression is enabled (see
460), or during an evaluation following disable period 242
when compression is disabled. In any case, first threshold 234
or Y1 represents a value at which the gain from performing
compression is not worth the cost, in terms of processing
resources and/or communication overhead in transmitting
compressed data flow 212.

At 355, method 350 may include disabling compression of
the data flow when the level of compression decreases below
the first threshold, wherein the first threshold is less than the
second threshold. As discussed above with reference to FIGS.
1, 2, 3A and 3B, call processing component 140 and/or com-
pressor component 145 of UE 114 or wireless serving node
116 or network 112 is configured for disabling compression
of'data flow 210 when level of compression 216 is below first
threshold 234 or Y1. For example, after threshold determiner
component 232 determines that level of compression 216 is
below first threshold 234, e.g., during an evaluation when
compression is enabled (see 460), or during an evaluation

US 9,351,195 B2

15

period following a disable period 242 when compression is
disabled, compressor component 145 may execute compres-
sion disabling component 240 to initiate or continue disabling
of compression of data flow 210. Subsequent to 355, for
example after disable period 242, method 350 may return to
352 and 353 to evaluate level of compression 216 relative to
first threshold 234 and second threshold 236 to determine
whether to continue disabling compression or to initiate
enabling of compression.

Optionally, at 356, method 350 may include transmitting
the data flow as an uncompressed data flow. As discussed
above with reference to FIGS. 1,2, 3A and 3B, call processing
component 140 and/or compressor component 145 of UE 114
or wireless serving node 116 or network 112 may initiate
transmission of uncompressed data flow 214 or original data
flow 210, e.g., via a transmitter or transceiver, or may transmit
uncompressed data flow 214 to a lower protocol layer, when
level of compression 216 is below first threshold 234 or Y1.
Subsequent to 356, method 350 may return to 352 to perform
another iteration, as noted above.

At 357, method 350 may include determining when the
level of compression of the data flow is above a second
threshold. As discussed above with reference to FIGS. 1, 2,
3 A and 3B, call processing component 140 and/or compres-
sor component 145 of UE 114 or wireless serving node 116 or
network 112 is configured for determining when level of
compression 216 of data flow 210 is above second threshold
236 or Y2. For example, for each evaluation period 218,
compressor component 145 may execute threshold deter-
miner component 232 to determine when level of compres-
sion 216 of data flow 210 is above second or higher threshold
236 or Y2. For instance, threshold determiner component 232
may determine that level of compression 216 of data flow 210
is above second threshold 236 or Y2 during an evaluation
when compression is disabled, e.g., following disable period
242, however, such a determination may also be made during
an evaluation when compression is enabled (although, gen-
erally, first threshold 234 for disabling compression may be
considered the more relevant threshold when compression is
enabled). In any case, second threshold 236 or Y2 represents
a value at which the gain from performing compression is
worth the cost, in terms of processing resources and/or com-
munication overhead in transmitting compressed data flow
212.

At 358, method 300300 may include enabling compression
of the data flow when the level of compression is above the
second threshold, wherein the second threshold is greater
than the first threshold. As discussed above with reference to
FIGS. 1,2, 3A and 3B, call processing component 140 and/or
compressor component 145 of UE 114 or wireless serving
node 116 or network 112 is configured for enabling compres-
sion of data flow 210 when level of compression 216 is above
a second threshold 236. For example, after threshold deter-
miner component 232 determines that level of compression
216 is above second threshold 236 or Y2, then compression
enabling component 244 enables compression on data flow
210. In an aspect, compression enabling component 244
operates to enable compression on data flow 210 when level
of compression 216 is above second threshold 236 or Y2 in
the case where compression is disabled. In other words, once
compression is disabled, e.g., level of compression 216 is
below first threshold 234 or Y1, then compression enabling
component 244 may not enable compression again until level
of compression 216 is above second threshold 236 or Y2. As
such, in the case of compression being enabled, compressor
component 145 generates compressed data flow 212 for trans-

10

20

40

45

16

mission. In an aspect, subsequent to 358, method 350 may
return to 352 to iterate the evaluation process.

Optionally, at 359, method 350 may include transmitting
the data flow as a compressed data flow. As discussed above
with reference to FIGS. 1, 2, 3A and 3B, call processing
component 140 and/or compressor component 145 of UE 114
or wireless serving node 116 or network 112 may initiate
transmission, e.g., via a transmitter or transceiver, or may
transmit compressed data flow 212 when level of compres-
sion 216 meets second threshold 236 or Y2. In an aspect,
subsequent to 359, method 350 may return to 352 to iterate
the evaluation process.

In an additional optional aspect, at 460, method 350 may
include determining, after enabling compression, if the level
of compression is above the first threshold. For example, after
initially enabling compression, compression enabling com-
ponent 244 continues to enable compression of data flow 210
for as long as level of compression 216 is above first threshold
234 or Y1 for disabling compression. In other words, once
compression is enabled, compression enabling component
244 may continue to enable compression of data flow 210 for
consecutive evaluation periods 218, which may occur upon
receipt of a new packet and which may take into account level
of compression 216 for a threshold number of past packets,
e.g., X number of packets as long as level of compression is
above first threshold 234 or Y1. If so, then method 350 may
include returning to 359 to transmit the data flow as com-
pressed data flow 212 and then iterate back to 460. If not, then
method 350 may proceed to 355 and disable compression and
356 to transmit the data flow as uncompressed data flow 214
and then return to the beginning of method 350.

In an aspect, for example, method 350 may be operated by
UE 114 or wireless serving node 116 or network 112 (FIGS.
1 and 2) executing the call processing component 140 and/or
compressor component 145 (FIGS. 1 and 2), or respective
components thereof.

Thus, aspects of this apparatus and method include
improving the utilization of processing resources during
compression of packet data flows.

Referring to FIGS. 5A and 5B, in operation, a UE such as
UE 114 (FIG. 2), or a network such as network 112 (FIG. 2)
may perform one aspect of a methods 400/401 for handling
incompressible data packets on multiple data flows (e.g.,
multiple data flows 210210 in FIG. 2). While, for purposes of
simplicity of explanation, the methods herein are shown and
described as a series of acts, it is to be understood and appre-
ciated that the methods are not limited by the order of acts, as
some acts may, in accordance with one or more aspects, occur
in different orders and/or concurrently with other acts from
that shown and described herein. For example, it is to be
appreciated that the methods could alternatively be repre-
sented as a series of interrelated states or events, such as in a
state diagram. Moreover, not all illustrated acts may be
required to implement a method in accordance with one or
more features described herein.

Referring to FIG. 5A, in an aspect, at block 402, method
400 includes receiving multiple data flows for compression.
For example, as described herein, UE 114 may execute call
processing component 140 (FIG. 2) to receive multiple data
flows 210 for compression. In some instances, each of the
multiple data flows 210 includes a plurality of data packets,
with each data packet having a data packet header and a
payload.

Atblock 404, method 400 includes determining a compres-
sion state for each of the multiple data flows. For example, as
described herein, state component 148 may execute deter-
mining component 310 (FIG. 2) to determine a compression

US 9,351,195 B2

17
state 312 for each of the multiple data flows 210. In some
instances, compression state 312 may comprise a testing state
314, compress state 316, and do-not-compress state 318.

Further at block 406, method 400 includes performing a
first compression algorithm on each of the multiple data flows
determined to have a compression state set to a do-not-com-
press state. For example, as described herein, call processing
component 140 may execute compressor component 145
(FIG. 2) to perform a first compression algorithm 222 on each
of'the multiple data flows 210 determined to have a compres-
sion state 312 set to a do-not-compress state 318. In some
instances, the compression algorithm 222 includes compress-
ing the data packet header of each data packet without com-
pressing the payload of each data packet.

Referring to FIG. 5B, a more detailed aspect of the com-
pression algorithm 222 based on the set compression state
312 (FIG. 2) is described. At block 407, method 401 includes
receiving multiple data flows for compression. For example,
as described herein, UE 114 may execute call processing
component 140 (FIG. 2) to receive multiple data flows 210 for
compression. In some instances, each of the multiple data
flows 210 includes a plurality of data packets, with each data
packet having a data packet header and a payload.

Further, at block 409, method 401 includes determining a
compression state for each of the multiple data flows. For
example, as described herein, state component 148 may
execute determining component 310 (FIG. 2) to determine a
compression state 312 for each of the multiple data flows 210.
In some instances, compression state 312 may comprise a
testing state 314, compress state 316, and do-not-compress
state 318. In some instances, when the compression state 312
is determined to be set to the compress state 316, method 401
may proceed to block 408. In other instances, when the com-
pression state 312 is determined to be set to the do-not-
compress state 318, method 401 may proceed to block 412. In
another instance, when the compression state 312 is deter-
mined to be set to testing state 314, method 401 may proceed
to block 410.

In an aspect, at block 408, method 401 may include per-
forming a compression algorithm 222 based on the compres-
sion state being set to the compress state. For example, as
described herein, call processing component 140 may
execute compressor component 145 (FIG. 2) to perform a first
compression algorithm 222 on each of the multiple data flows
210 determined to have a compression state 312 set to a
compress state 316.

At block 411, method 401 may include updating the level
of compression on each of the multiple data flows. For
example, as described herein, compressor component 145
may execute evaluating component 230 (FIG. 2) to update the
level of compression 216 on each of the multiple data flows
210. In some instances, the filter compression percentage
may be a ratio of the size of the compressed data packet and
the size of the original uncompressed data packet. In other
instances, the level of compression of data flow 216 may be
calculated based on the level of compression of the payload of
each data packet.

Moreover, at block 414, method 401 may include deter-
mining whether the level of compression satisfies a threshold.
For example, as described herein, compressor component
145 may execute threshold determiner component 232 (FIG.
2) to determine whether the level of compression 216 on each
of the multiple data flows 210 satisfy first threshold 234. If it
is determined that the level of compression 216 on each of the
multiple data flows 210 satisfies the first threshold 234 then
method 401 returns to block 408. However, if it is determined
that the level of compression 216 on each of the multiple data

10

15

20

25

30

35

40

45

50

55

60

65

18
flows 210 fails to satisty the first threshold 234 then method
401 may proceed to block 412.

In another aspect, at block 412, method 401 may include
performing a compression based on the compression state
being set to the do-not-compress state. For example, as
described herein, call processing component 140 may
execute compressor component 145 (FIG. 2) to perform a first
compression algorithm 222 on each of the multiple data flows
210 determined to have a compression state 312 set to a
do-not-compress state 318. In some instances, compressor
component 145 may be configured to enable compression for
a data packet header of a data packet of each of the multiple
data flows 210. Additionally, compressor component 145
may disable compression for a payload of the data packet of
each of the multiple data flows 210.

At block 415, method 401 may include determining
whether a duration satisfies a threshold. For example, as
described herein, state component 148 may execute timer
component 330 (FIG. 2) to determine whether a duration 332
satisfies a duration threshold 334. In some instances, timer
component 330 may maintain a duration threshold 334 for
each of the multiple data flows 210, wherein the timer com-
ponent 330 uses the duration threshold 334 to determine
whether to change the compression state 312 on each of the
multiple data flows 210. If it is determined that duration 332
fails to satisfy the duration threshold 334 then method 401
returns to block 412. However, ifitis determined that duration
332 satisfies the duration threshold 334 then method 401
proceeds to block 410.

In a further aspect, at block 410, method 401 may include
performing a compression based on the compression state
being set to the testing state. For example, as described herein,
call processing component 140 may execute compressor
component 145 (FIG. 2) to perform a first compression algo-
rithm 222 on each of the multiple data flows 210 determined
to have a compression state 312 set to a testing state 314.

At block 413, method 401 may include updating the level
of compression on each of the multiple data flows. For
example, as described herein, compressor component 145
may execute evaluating component 230 (FIG. 2) to update the
level of compression 216 on each of the multiple data flows
210. In some instances, the filter compression percentage
may be a ratio of the size of the compressed data packet and
the size of the original uncompressed data packet. In other
instances, the level of compression of data flow 216 may be
calculated based on the level of compression of the payload of
each data packet.

Moreover, at block 416, method 401 may include deter-
mining whether the level of compression satisfies a threshold.
For example, as described herein, compressor component
145 may execute threshold determiner component 232 (FIG.
2) to determine whether the level of compression 216 on each
of'the multiple data flows 210 satisfy first threshold 234. Ifit
is determined that the level of compression 216 on each of the
multiple data flows 210 satisfies the first threshold 234 then
method 401 proceeds to block 408. However, if it is deter-
mined that the level of compression 216 on each of the mul-
tiple data flows 210 fails to satisfy the first threshold 234 then
method 401 may proceed to block 412.

FIGS. 6A-6C are conceptual diagrams illustrating various
aspects of the different compression states (e.g., compres-
sions state 312 of FIG. 2) for each of the multiple data flows
210 (FIG. 2) of a UE 114 (FIG. 1) and/or network 112 (FIG.
1).

For example, in FIG. 6A, conceptual diagram 420 illus-
trates the compression states comprising testing state 314,
compress state 316, and do-not-compress state 318. Further,

US 9,351,195 B2

19

transition arrows 422, 424, 426, and 428 correspond to the
possible changes in compression state. For example, when a
particular data flow out the multiple data flows 210 is in the
do-not-compress state 318, and duration 332 satisfies dura-
tion threshold 334, then the compression state changes to the
testing state 314 as illustrated by transition arrow 422. In the
testing state 314, data packets of a particular data flow 210
may be compressed, and at some point the compression state
may change to either compress state 316 or do-not-compress
state 318. For example, if the level of compression of data
flow 216 satisfies a first threshold 234, then testing state 314
changes to the compress state 316 as illustrated by transition
arrow 426. On the other hand, if during testing state 314, the
level of compression of data flow 216 fails to satisfy a first
threshold 234, then testing state 314 changes to the do-not-
compress state 318 as illustrated by transition arrow 424.
Moreover, during the compress state 428, data packets of a
particular data flow 210 may be compressed, and at some
point the compression state may change to do-not-compress
state 318. For example, if the level of compression of data
flow 216 fails to satisfy a first threshold 234, then compress
state 316 changes to the do-not-compress state 318 as illus-
trated by transition arrow 428.

FIG. 6B illustrates a conceptual diagram 440 of the rela-
tionship between the compression state 442 (corresponding
to compression state 312) and time 444 at which each com-
pression state occurs. For example, compression state of one
of the multiple data flows 210 (FIG. 2) may be initially set at
a testing state 314a. At some point in time, testing state 314a
may change to do-not-compress state 318a. The duration 446
is initially set to a default value until the compression state
changes to testing state 3145. Subsequently, as testing state
3145 changes to do-not-compress state 3185, duration 448 is
increased, so that processing resources are not wasted for a
data flow that repeatedly fails to reach a compress state 316.
As such, as the compression state changes to 314¢, and sub-
sequently to do-not-compress state 318¢, the amount of time
before the compression state changes to testing state 3144 is
increased to duration 450.

FIG. 6C illustrates another conceptual diagram 452 of the
relationship between the compression state 442 (correspond-
ing to compression state 312) and time 444 at which each
compression state occurs. For example, compression state of
one of the multiple data flows 210 (FIG. 2) may be initially set
at a testing state 314a. At some point in time, testing state
314a may change to do-not-compress state 318a. The dura-
tion 454 is initially set to a default value until the compression
state changes to testing state 3145. Subsequently, as testing
state 3145 changes to do-not-compress state 31854, duration
448 is increased, so that processing resources are not wasted
for a data flow that repeatedly fails to reach a compress state
316. As such, as the compression state changes to 314¢, and
subsequently to compress state 316a, the subsequent duration
for do-not-compress states 318c¢ is reset to its default value,
duration 454. Therefore, the amount of time 444 before the
compression state changes to testing state 314d corresponds
to duration 454, which is the same as the duration for do-not-
compress state 318a.

Referring to FIG. 7, in one aspect, UE 114 and/or wireless
serving node 116 of FIGS. 1 and 2 may be implemented by a
specially programmed or configured computer device 580,
wherein the special programming or configuration includes
call processing component 140, as described herein. For
example, for implementation as UE 114 (FIGS. 1 and 2),
computer device 580 may include one or more components
for computing and transmitting a data from a UE 114 to
network 112 via wireless serving node 116, such as in spe-

10

15

20

25

30

35

40

45

50

55

60

65

20

cially programmed computer readable instructions or code,
firmware, hardware, or some combination thereof. Computer
device 580 includes a processor 582 for carrying out process-
ing functions associated with one or more of components and
functions described herein. Processor 582 can include a
single or multiple set of processors or multi-core processors.
Moreover, processor 582 can be implemented as an integrated
processing system and/or a distributed processing system.

Computer device 580 further includes a memory 584, such
as for storing data used herein and/or local versions of appli-
cations being executed by processor 582. Memory 584 can
include any type of memory usable by a computer, such as
random access memory (RAM), read only memory (ROM),
tapes, magnetic discs, optical discs, volatile memory, non-
volatile memory, and any combination thereof.

Further, computer device 580 includes a communications
component 586 that provides for establishing and maintain-
ing communications with one or more parties utilizing hard-
ware, software, and services as described herein. Communi-
cations component 586 may carry communications between
components on computer device 580, as well as between
computer device 580 and external devices, such as devices
located across a communications network and/or devices
serially or locally connected to computer device 580. For
example, communications component 586 may include one
or more buses, and may further include transmit chain com-
ponents and receive chain components associated with and
including a transmitter and receiver, respectively, or a trans-
ceiver, operable for interfacing with external devices.

Additionally, computer device 580 may further include a
data store 588, which can be any suitable combination of
hardware and/or software, that provides for mass storage of
information, databases, and programs employed in connec-
tion with aspects described herein. For example, data store
588 may be a data repository for applications not currently
being executed by processor 582.

Computer device 580 may additionally include a user inter-
face component 589 operable to receive inputs from a user of
computer device 580, and further operable to generate out-
puts for presentation to the user. User interface component
589 may include one or more input devices, including but not
limited to a keyboard, a number pad, a mouse, a touch-sen-
sitive display, a navigation key, a function key, a microphone,
avoice recognition component, any other mechanism capable
of receiving an input from a user, or any combination thereof.
Further, user interface component 589 may include one or
more output devices, including but not limited to a display, a
speaker, a haptic feedback mechanism, a printer, any other
mechanism capable of presenting an output to a user, or any
combination thereof.

Furthermore, computer device 580 may include, or may be
in communication with, call processing component 140,
which may be configured to perform the functions described
herein.

Referring to FIG. 8, in one aspect, an example of a hard-
ware implementation for an apparatus 600 may employ a
processing system 614 configured to include call processing
component 140 and compressor component 145 (FIGS. 1 and
2) implementing the functions described above. In this
example, the processing system 614 may be implemented
with a bus architecture, represented generally by the bus 602.
The bus 602 may include any number of interconnecting
buses and bridges depending on the specific application of the
processing system 614 and the overall design constraints. The
bus 602 links together various circuits including one or more
processors, represented generally by the processor 604, and
computer-readable media, represented generally by the com-

US 9,351,195 B2

21

puter-readable medium 606. The bus 602 may also link vari-
ous other circuits such as timing sources, peripherals, voltage
regulators, and power management circuits, which are well
known in the art, and therefore, will not be described any
further. A bus interface 608 provides an interface between the
bus 602 and a transceiver 610. The transceiver 610 provides a
means for communicating with various other apparatus over
a transmission medium. Depending upon the nature of the
apparatus, a user interface 612 (e.g., keypad, display, speaker,
microphone, joystick) may also be provided.

The processor 604 is responsible for managing the bus 602
and general processing, including the execution of software
stored on the computer-readable medium 606. The software,
when executed by the processor 604, causes the processing
system 614 to perform the various functions described infra
for any particular apparatus. The computer-readable medium
606 may also be used for storing data that is manipulated by
the processor 604 when executing software.

In an aspect, processor 604, computer-readable medium
606, or a combination of both may be configured or otherwise
specially programmed to perform the functionality of the call
processing component 140 and/or compressor component
145 (FIGS. 1 and 2) as described herein.

The various concepts presented throughout this disclosure
may be implemented across a broad variety of telecommuni-
cation systems, network architectures, and communication
standards.

Referring to FIG. 9, by way of example and without limi-
tation, the aspects of the present disclosure are presented with
reference to a UMTS system 700 employing a W-CDMA air
interface. A UMTS network includes three interacting
domains: a Core Network (CN) 704, a UMTS Terrestrial
Radio Access Network (UTRAN) 702, and User Equipment
(UE)710. UE 710 may be configured to include, for example,
the call processing component 140 and/or compressor com-
ponent 145 (FIGS. 1 and 2) implementing the functions
described above. In this example, the UTRAN 702 provides
various wireless services including telephony, video, data,
messaging, broadcasts, and/or other services. The UTRAN
702 may include a plurality of Radio Network Subsystems
(RNSs) such as an RNS 707, each controlled by a respective
Radio Network Controller (RNC) such as an RNC 706. Here,
the UTRAN 702 may include any number of RNCs 706 and
RNSs 707 in addition to the RNCs 706 and RNSs 707 illus-
trated herein. The RNC 706 is an apparatus responsible for,
among other things, assigning, reconfiguring and releasing
radio resources within the RNS 707. The RNC 706 may be
interconnected to other RNCs (not shown) inthe UTRAN 702
through various types of interfaces such as a direct physical
connection, a virtual network, or the like, using any suitable
transport network.

Communication between a UE 710 and a Node B 708 may
be considered as including a physical (PHY) layer and a
medium access control (MAC) layer. Further, communica-
tion between a UE 710 and an RNC 706 by way of a respec-
tive Node B 708 may be considered as including a radio
resource control (RRC) layer. In the instant specification, the
PHY layer may be considered layer 1; the MAC layer may be
considered layer 2; and the RRC layer may be considered
layer 3. Information hereinbelow utilizes terminology intro-
duced in the RRC Protocol Specification, 3GPP TS 25.331,
incorporated herein by reference.

The geographic region covered by the RNS 707 may be
divided into a number of cells, with a radio transceiver appa-
ratus serving each cell. A radio transceiver apparatus is com-
monly referred to as a Node B in UMTS applications, but may
also be referred to by those skilled in the art as a base station

10

15

20

25

30

35

40

45

50

55

60

65

22

(BS), a base transceiver station (BTS), a radio base station, a
radio transceiver, a transceiver function, a basic service set
(BSS), an extended service set (ESS), anaccess point (AP), or
some other suitable terminology. For clarity, three Node Bs
708 are shown in each RNS 707; however, the RNSs 707 may
include any number of wireless Node Bs. The Node Bs 708
provide wireless access points to a CN 704 for any number of
mobile apparatuses. Examples of a mobile apparatus include
a cellular phone, a smart phone, a session initiation protocol
(SIP) phone, a laptop, a notebook, a netbook, a smartbook, a
personal digital assistant (PDA), a satellite radio, a global
positioning system (GPS) device, a multimedia device, a
video device, a digital audio player (e.g., MP3 player), a
camera, a game console, or any other similar functioning
device. The UE 710 is commonly referred to as a UE in
UMTS applications, but may also be referred to by those
skilled in the art as a mobile station, a subscriber station, a
mobile unit, a subscriber unit, a wireless unit, a remote unit, a
mobile device, a wireless device, a wireless communications
device, aremote device, a mobile subscriber station, an access
terminal, a mobile terminal, a wireless terminal, a remote
terminal, a handset, a terminal, a user agent, a mobile client,
a client, or some other suitable terminology. In a UMTS
system, the UE 710 may further include a universal subscriber
identity module (USIM) 711, which contains a user’s sub-
scription information to a network. For illustrative purposes,
one UE 710 is shown in communication with a number of the
Node Bs 708. The DL, also called the forward link, refers to
the communication link from a Node B 708 to a UE 710, and
the UL, also called the reverse link, refers to the communi-
cation link from a UE 710 to a Node B 708.

The CN 704 interfaces with one or more access networks,
such as the UTRAN 702. As shown, the CN 704 is a GSM
core network. However, as those skilled in the art will recog-
nize, the various concepts presented throughout this disclo-
sure may be implemented in a RAN, or other suitable access
network, to provide UEs with access to types of CNs other
than GSM networks.

The CN 704 includes a circuit-switched (CS) domainand a
packet-switched (PS) domain. Some of the circuit-switched
elements are a Mobile services Switching Centre (MSC), a
Visitor location register (VLR) and a Gateway MSC. Packet-
switched elements include a Serving GPRS Support Node
(SGSN) and a Gateway GPRS Support Node (GGSN). Some
network elements, like EIR, HLR, VLR and AuC may be
shared by both of the circuit-switched and packet-switched
domains. In the illustrated example, the CN 704 supports
circuit-switched services with a MSC 712 and a GMSC 714.
In some applications, the GMSC 714 may be referred to as a
media gateway (MGW). One or more RNCs, such as the RNC
706, may be connected to the MSC 712. The MSC 712 is an
apparatus that controls call setup, call routing, and UE mobil-
ity functions. The MSC 712 also includes a VLR that contains
subscriber-related information for the duration that a UE is in
the coverage area of the MSC 712. The GMSC 714 provides
a gateway through the MSC 712 for the UE to access a
circuit-switched network 716. The GMSC 714 includes a
home location register (HL.R) 715 containing subscriber data,
such as the data reflecting the details of the services to which
a particular user has subscribed. The HL.R is also associated
with an authentication center (AuC) that contains subscriber-
specific authentication data. When a call is received for a
particular UE, the GMSC 714 queries the HL.R 715 to deter-
mine the UE’s location and forwards the call to the particular
MSC serving that location.

The CN 704 also supports packet-data services with a
serving GPRS support node (SGSN) 718 and a gateway

US 9,351,195 B2

23

GPRS support node (GGSN) 720. GPRS, which stands for
General Packet Radio Service, is designed to provide packet-
data services at speeds higher than those available with stan-
dard circuit-switched data services. The GGSN 720 provides
a connection for the UTRAN 702 to a packet-based network
722. The packet-based network 722 may be the Internet, a
private data network, or some other suitable packet-based
network. The primary function of the GGSN 720 is to provide
the UEs 710 with packet-based network connectivity. Data
packets may be transferred between the GGSN 720 and the
UEs 710 through the SGSN 718, which performs primarily
the same functions in the packet-based domain as the MSC
712 performs in the circuit-switched domain.

An air interface for UMTS may utilize a spread spectrum
Direct-Sequence Code Division Multiple Access (DS-
CDMA) system. The spread spectrum DS-CDMA spreads
user data through multiplication by a sequence of pseudoran-
dom bits called chips. The “wideband” W-CDMA air inter-
face for UMTS is based on such direct sequence spread spec-
trum technology and additionally calls for a frequency
division duplexing (FDD). FDD uses a different carrier fre-
quency for the UL and DL between a Node B 708 and a UE
710. Another air interface for UMTS that utilizes DS-CDMA,
and uses time division duplexing (TDD), is the TD-SCDMA
air interface. Those skilled in the art will recognize that
although various examples described herein may refer to a
W-CDMA air interface, the underlying principles may be
equally applicable to a TD-SCDMA air interface.

An HSPA air interface includes a series of enhancements to
the 3G/W-CDMA air interface, facilitating greater through-
put and reduced latency. Among other modifications over
prior releases, HSPA utilizes hybrid automatic repeat request
(HARQ), shared channel transmission, and adaptive modu-
lation and coding. The standards that define HSPA include
HSDPA (high speed downlink packet access) and HSUPA
(high speed uplink packet access, also referred to as enhanced
uplink, or EUL).

HSDPA utilizes as its transport channel the high-speed
downlink shared channel (HS-DSCH). The HS-DSCH is
implemented by three physical channels: the high-speed
physical downlink shared channel (HS-PDSCH), the high-
speed shared control channel (HS-SCCH), and the high-
speed dedicated physical control channel (HS-DPCCH).

Among these physical channels, the HS-DPCCH carries
the HARQ ACK/NACK signaling on the uplink to indicate
whether a corresponding packet transmission was decoded
successfully. Thatis, with respect to the downlink, the UE 710
provides feedback to the node B 708 over the HS-DPCCH to
indicate whether it correctly decoded a packet on the down-
link.

HS-DPCCH further includes feedback signaling from the
UE 710 to assist the node B 708 in taking the right decision in
terms of modulation and coding scheme and precoding
weight selection, this feedback signaling including the CQI
and PCI.

“HSPA Evolved” or HSPA+ is an evolution of the HSPA
standard that includes MIMO and 64-QAM, enabling
increased throughput and higher performance. That is, in an
aspect of the disclosure, the node B 708 and/or the UE 710
may have multiple antennas supporting MIMO technology.
The use of MIMO technology enables the node B 708 to
exploit the spatial domain to support spatial multiplexing,
beamforming, and transmit diversity.

Multiple Input Multiple Output (MIMO) is a term gener-
ally used to refer to multi-antenna technology, that is, mul-
tiple transmit antennas (multiple inputs to the channel) and
multiple receive antennas (multiple outputs from the chan-

5

10

15

20

25

30

35

40

45

50

55

60

65

24

nel). MIMO systems generally enhance data transmission
performance, enabling diversity gains to reduce multipath
fading and increase transmission quality, and spatial multi-
plexing gains to increase data throughput.

Spatial multiplexing may be used to transmit different
streams of data simultaneously on the same frequency. The
data steams may be transmitted to a single UE 710 to increase
the data rate, or to multiple UEs 710 to increase the overall
system capacity. This is achieved by spatially precoding each
data stream and then transmitting each spatially precoded
stream through a different transmit antenna on the downlink.
The spatially precoded data streams arrive at the UE(s) 710
with different spatial signatures, which enables each of the
UE(s) 710 to recover the one or more the data streams des-
tined for that UE 710. On the uplink, each UE 710 may
transmit one or more spatially precoded data streams, which
enables the node B 708 to identify the source of each spatially
precoded data stream.

Spatial multiplexing may be used when channel conditions
are good. When channel conditions are less favorable, beam-
forming may be used to focus the transmission energy in one
or more directions, or to improve transmission based on char-
acteristics of the channel. This may be achieved by spatially
precoding a data stream for transmission through multiple
antennas. To achieve good coverage at the edges of the cell, a
single stream beamforming transmission may be used in
combination with transmit diversity.

Generally, for MIMO systems utilizing n transmit anten-
nas, n transport blocks may be transmitted simultaneously
over the same carrier utilizing the same channelization code.
Note that the different transport blocks sent over the n trans-
mit antennas may have the same or different modulation and
coding schemes from one another.

On the other hand, Single Input Multiple Output (SIMO)
generally refers to a system utilizing a single transmit antenna
(a single input to the channel) and multiple receive antennas
(multiple outputs from the channel). Thus, in a SIMO system,
a single transport block is sent over the respective carrier.

Referring to FIG. 10, an access network 800 in a UTRAN
architecture includes multiple cellular regions (cells) in
which a UE including call processing component 140 and/or
compressor component 145 (FIGS. 1 and 2) may operate and
perform the functions described herein. The cellular regions
ofaccess network 800 include cells 802, 804, and 806, each of
which may include one or more sectors. The multiple sectors
can be formed by groups of antennas with each antenna
responsible for communication with UEs in a portion of the
cell. For example, in cell 802, antenna groups 812, 814, and
816 may each correspond to a different sector. In cell 804,
antenna groups 818, 820, and 822 each correspond to a dif-
ferent sector. In cell 806, antenna groups 824, 826, and 828
each correspond to a different sector. The cells 802, 804 and
806 may include several wireless communication devices,
e.g., User Equipment or UEs, which may be in communica-
tion with one or more sectors of each cell 802, 804 or 806. For
example, UEs 830 and 832 may be in communication with
Node B 842, UEs 834 and 836 may be in communication with
Node B 844, and UEs 838 and 840 can be in communication
with Node B 846. Here, each Node B 842, 844, 846 is con-
figured to provide an access point to a CN 904 (see FI1G. 9) for
allthe UEs 830, 832, 834, 836, 838, 840 in the respective cells
802, 804, and 806. Node Bs 842, 844, 846 and UEs 830, 832,
834, 836, 838, 840 respectively may be configured to include,
for example, the call processing component 140 and/or com-
pressor component 145 (FIGS. 1 and 2) implementing the
functions described above.

US 9,351,195 B2

25

As the UE 834 moves from the illustrated location in cell
804 into cell 806, a serving cell change (SCC) or handover
may occur in which communication with the UE 834 transi-
tions from the cell 804, which may be referred to as the source
cell, to cell 806, which may be referred to as the target cell.
Management of the handover procedure may take place at the
UE 834, at the Node Bs corresponding to the respective cells,
at a radio network controller 706 (see FIG. 9), or at another
suitable node in the wireless network. For example, during a
call with the source cell 804, or at any other time, the UE 834
may monitor various parameters of the source cell 804 as well
as various parameters of neighboring cells such as cells 806
and 802. Further, depending on the quality of these param-
eters, the UE 834 may maintain communication with one or
more of the neighboring cells. During this time, the UE 834
may maintain an Active Set, that is, a list of cells that the UE
834 is simultaneously connected to (i.e., the UTRA cells that
are currently assigning a downlink dedicated physical chan-
nel DPCH or fractional downlink dedicated physical channel
F-DPCH to the UE 834 may constitute the Active Set).

The modulation and multiple access scheme employed by
the access network 800 may vary depending on the particular
telecommunications standard being deployed. By way of
example, the standard may include Evolution-Data Opti-
mized (EV-DO) or Ultra Mobile Broadband (UMB). EV-DO
and UMB are air interface standards promulgated by the 3rd
Generation Partnership Project 2 (3GPP2) as part of the
CDMA2000 family of standards and employs CDMA to pro-
vide broadband Internet access to mobile stations. The stan-
dard may alternately be Universal Terrestrial Radio Access
(UTRA) employing Wideband-CDMA (W-CDMA) and
other variants of CDMA, such as TD-SCDMA; Global Sys-
tem for Mobile Communications (GSM) employing TDMA;
and Evolved UTRA (E-UTRA), Ultra Mobile Broadband
(UMB), and Flash-OFDM employing OFDMA. CDMA2000
and UMB are described in documents from the 3GPP2 orga-
nization. The actual wireless communication standard and the
multiple access technology employed will depend on the
specific application and the overall design constraints
imposed on the system.

The radio protocol architecture may take on various forms
depending on the particular application. An example for an
HSPA system will now be presented with reference to FIG.
11.

Referring to FIG. 11, an example of the radio protocol
architecture 900 for the user plane 902 and the control plane
904 may be included in a network entity and/or UE such as an
entity within network 112 and/or UE 114 (FIGS. 1 and 2). The
radio protocol architecture 900 for the UE and node B is
shown with three layers: Layer 1906, Layer 2 908, and Layer
3910. Layer 1906 is the lowest lower and implements various
physical layer signal processing functions. As such, Layer 1
906 includes the physical layer 907. Layer 2 (1.2 layer) 908 is
above the physical layer 907 and is responsible for the link
between the UE and node B over the physical layer 907. Layer
3 (L3 layer) 910 includes a radio resource control (RRC)
sublayer 915. The RRC sublayer 915 handles the control
plane signaling of Layer 3 between the UE and the UTRAN.

In the user plane, the 1.2 layer 908 includes a media access
control (MAC) sublayer 909, a radio link control (RL.C) sub-
layer 911, and a packet data convergence protocol (PDCP)
913 sublayer, which are terminated at the node B on the
network side. Although not shown, the UE may have several
upper layers above the .2 layer 908 including a network layer
(e.g., IP layer) that is terminated at a PDN gateway on the
network side, and an application layer that is terminated at the
other end of the connection (e.g., far end UE, server, etc.).

10

15

20

25

30

35

40

45

50

55

60

65

26

The PDCP sublayer 913 provides multiplexing between
different radio bearers and logical channels. The PDCP sub-
layer 913 also provides header compression for upper layer
data packets to reduce radio transmission overhead, security
by ciphering the data packets, and handover support for UEs
between node Bs. The RLC sublayer 911 provides segmen-
tation and reassembly of upper layer data packets, retrans-
mission of lost data packets, and reordering of data packets to
compensate for out-of-order reception due to hybrid auto-
matic repeat request (HARQ). The MAC sublayer 909 pro-
vides multiplexing between logical and transport channels.
The MAC sublayer 909 is also responsible for allocating the
various radio resources (e.g., resource blocks) in one cell
among the UEs. The MAC sublayer 909 is also responsible
for HARQ operations.

Referring to FIG. 12, a communication system 1000
includes a Node B 1010 in communication with a UE 1050,
where Node B 1010 may be wireless serving node 116 or an
entity within network 112 and the UE 1050 may be UE 114
having call processing component 140 and/or compressor
component 145 according to the aspects described in FIGS. 1
and 2. In the downlink communication, a transmit processor
1020 may receive data from a data source 1012 and control
signals from a controller/processor 1040. The transmit pro-
cessor 1020 provides various signal processing functions for
the data and control signals, as well as reference signals (e.g.,
pilot signals). For example, the transmit processor 1020 may
provide cyclic redundancy check (CRC) codes for error
detection, coding and interleaving to facilitate forward error
correction (FEC), mapping to signal constellations based on
various modulation schemes (e.g., binary phase-shift keying
(BPSK), quadrature phase-shift keying (QPSK), M-phase-
shift keying (M-PSK), M-quadrature amplitude modulation
(M-QAM), and the like), spreading with orthogonal variable
spreading factors (OVSF), and multiplying with scrambling
codes to produce a series of symbols. Channel estimates from
a channel processor 1044 may be used by a controller/pro-
cessor 1040 to determine the coding, modulation, spreading,
and/or scrambling schemes for the transmit processor 1020.
These channel estimates may be derived from a reference
signal transmitted by the UE 1050 or from feedback from the
UE 1050. The symbols generated by the transmit processor
1020 are provided to a transmit frame processor 1030 to
create a frame structure. The transmit frame processor 1030
creates this frame structure by multiplexing the symbols with
information from the controller/processor 1040, resulting in a
series of frames. The frames are then provided to a transmitter
1032, which provides various signal conditioning functions
including amplifying, filtering, and modulating the frames
onto a carrier for downlink transmission over the wireless
medium through antenna 1034. The antenna 1034 may
include one or more antennas, for example, including beam
steering bidirectional adaptive antenna arrays or other similar
beam technologies.

At the UE 1050, a receiver 1054 receives the downlink
transmission through an antenna 1052 and processes the
transmission to recover the information modulated onto the
carrier. The information recovered by the receiver 1054 is
provided to a receive frame processor 1060, which parses
each frame, and provides information from the frames to a
channel processor 1094 and the data, control, and reference
signals to a receive processor 1070. The receive processor
1070 then performs the inverse of the processing performed
by the transmit processor 1020 in the Node B 1010. More
specifically, the receive processor 1070 descrambles and
despreads the symbols, and then determines the most likely
signal constellation points transmitted by the Node B 1010

US 9,351,195 B2

27

based on the modulation scheme. These soft decisions may be
based on channel estimates computed by the channel proces-
sor 1094. The soft decisions are then decoded and deinter-
leaved to recover the data, control, and reference signals. The
CRC codes are then checked to determine whether the frames
were successfully decoded. The data carried by the success-
fully decoded frames will then be provided to a data sink
1072, which represents applications running in the UE 1050
and/or various user interfaces (e.g., display). Control signals
carried by successfully decoded frames will be provided to a
controller/processor 1090. When frames are unsuccessfully
decoded by the receiver processor 1070, the controller/pro-
cessor 1090 may also use an acknowledgement (ACK) and/or
negative acknowledgement (NACK) protocol to support
retransmission requests for those frames.

In the uplink, data from a data source 1078 and control
signals from the controller/processor 1090 are provided to a
transmit processor 1080. The data source 1078 may represent
applications running in the UE 1050 and various user inter-
faces (e.g., keyboard). Similar to the functionality described
in connection with the downlink transmission by the Node B
1010, the transmit processor 1080 provides various signal
processing functions including CRC codes, coding and inter-
leaving to facilitate FEC, mapping to signal constellations,
spreading with OVSFs, and scrambling to produce a series of
symbols. Channel estimates, derived by the channel proces-
sor 1094 from a reference signal transmitted by the Node B
1010 or from feedback contained in the midamble transmitted
by the Node B 1010, may be used to select the appropriate
coding, modulation, spreading, and/or scrambling schemes.
The symbols produced by the transmit processor 1080 will be
provided to a transmit frame processor 1082 to create a frame
structure. The transmit frame processor 1082 creates this
frame structure by multiplexing the symbols with informa-
tion from the controller/processor 1090, resulting in a series
of'frames. The frames are then provided to a transmitter 1056,
which provides various signal conditioning functions includ-
ing amplification, filtering, and modulating the frames onto a
carrier for uplink transmission over the wireless medium
through the antenna 1052.

The uplink transmission is processed at the Node B 1010 in
a manner similar to that described in connection with the
receiver function at the UE 1050. A receiver 1035 receives the
uplink transmission through the antenna 1034 and processes
the transmission to recover the information modulated onto
the carrier. The information recovered by the receiver 1035 is
provided to a receive frame processor 1036, which parses
each frame, and provides information from the frames to the
channel processor 1044 and the data, control, and reference
signals to a receive processor 1038. The receive processor
1038 performs the inverse of the processing performed by the
transmit processor 1080 in the UE 1050. The data and control
signals carried by the successfully decoded frames may then
be provided to a data sink 1039 and the controller/processor,
respectively. If some of the frames were unsuccessfully
decoded by the receive processor, the controller/processor
1040 may also use an acknowledgement (ACK) and/or nega-
tive acknowledgement (NACK) protocol to support retrans-
mission requests for those frames.

The controller/processors 1040 and 1090 may be used to
direct the operation at the Node B 1010 and the UE 1050,
respectively. For example, the controller/processors 1040 and
1090 may provide various functions including timing, periph-
eral interfaces, voltage regulation, power management, and
other control functions. The computer readable media of
memories 1042 and 1092 may store data and software for the
Node B 1010 and the UE 1050, respectively. A scheduler/

15

20

25

30

40

45

55

28

processor 1046 at the Node B 1010 may be used to allocate
resources to the UEs and schedule downlink and/or uplink
transmissions for the UEs.

Several aspects of a telecommunications system have been
presented with reference to a W-CDMA system. As those
skilled in the art will readily appreciate, various aspects
described throughout this disclosure may be extended to
other telecommunication systems, network architectures and
communication standards.

By way of example, various aspects may be extended to
other UMTS systems such as TD-SCDMA, High Speed
Downlink Packet Access (HSDPA), High Speed Uplink
Packet Access (HSUPA), High Speed Packet Access Plus
(HSPA+) and TD-CDMA. Various aspects may also be
extended to systems employing Long Term Evolution (LTE)
(in FDD, TDD, or both modes), LTE-Advanced (LTE-A) (in
FDD, TDD, or both modes), CDMA2000, Evolution-Data
Optimized (EV-DO), Ultra Mobile Broadband (UMB), IEEE
802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Ultra-
Wideband (UWB), Bluetooth, and/or other suitable systems.
The actual telecommunication standard, network architec-
ture, and/or communication standard employed will depend
on the specific application and the overall design constraints
imposed on the system.

In accordance with various aspects of the disclosure, an
element, or any portion of an element, or any combination of
elements may be implemented with a “processing system” or
processor (FIG. 5 or 6) that includes one or more processors.
Examples of processors include microprocessors, microcon-
trollers, digital signal processors (DSPs), field programmable
gate arrays (FPGAs), programmable logic devices (PLDs),
state machines, gated logic, discrete hardware circuits, and
other suitable hardware configured to perform the various
functionality described throughout this disclosure. One or
more processors in the processing system may execute soft-
ware. Software shall be construed broadly to mean instruc-
tions, instruction sets, code, code segments, program code,
programs, subprograms, software modules, applications,
software applications, software packages, routines, subrou-
tines, objects, executables, threads of execution, procedures,
functions, etc., whether referred to as software, firmware,
middleware, microcode, hardware description language, or
otherwise. The software may reside on a computer-readable
medium 606 (FIG. 8). The computer-readable medium 606
(FIG. 8) may be a non-transitory computer-readable medium.
A non-transitory computer-readable medium includes, by
way of example, a magnetic storage device (e.g., hard disk,
floppy disk, magnetic strip), an optical disk (e.g., compact
disk (CD), digital versatile disk (DVD)), a smart card, a flash
memory device (e.g., card, stick, key drive), random access
memory (RAM), read only memory (ROM), programmable
ROM (PROM), erasable PROM (EPROM), electrically eras-
able PROM (EEPROM), a register, a removable disk, and any
other suitable medium for storing software and/or instruc-
tions that may be accessed and read by a computer. The
computer-readable medium may also include, by way of
example, a carrier wave, a transmission line, and any other
suitable medium for transmitting software and/or instructions
that may be accessed and read by a computer. The computer-
readable medium may be resident in the processing system,
external to the processing system, or distributed across mul-
tiple entities including the processing system. The computer-
readable medium may be embodied in a computer-program
product. By way of example, a computer-program product
may include a computer-readable medium in packaging
materials. Those skilled in the art will recognize how best to
implement the described functionality presented throughout

US 9,351,195 B2

29

this disclosure depending on the particular application and
the overall design constraints imposed on the overall system.

It is to be understood that the specific order or hierarchy of
steps in the methods disclosed is an illustration of exemplary
processes. Based upon design preferences, it is understood
that the specific order or hierarchy of steps in the methods
may be rearranged. The accompanying method claims
present elements of the various steps in a sample order, and
are not meant to be limited to the specific order or hierarchy
presented unless specifically recited therein.

The previous description is provided to enable any person
skilled in the art to practice the various aspects described
herein. Various modifications to these aspects will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other aspects. Thus, the
claims are not intended to be limited to the aspects shown
herein, but is to be accorded the full scope consistent with the
language of the claims, wherein reference to an element in the
singular is not intended to mean “one and only one” unless
specifically so stated, but rather “one or more.” Unless spe-
cifically stated otherwise, the term “some” refers to one or
more. A phrase referring to “at least one of” a list of items
refers to any combination of those items, including single
members. As an example, “at least one of: a, b, or ¢” is
intended to cover: a;b;c;aand b;aand ¢;band ¢;and a, b and
¢. Moreover, nothing disclosed herein is intended to be dedi-
cated to the public regardless of whether such disclosure is
explicitly recited in the claims. No claim element is to be
construed under the provisions of 35 U.S.C. §112, sixth para-
graph, unless the element is expressly recited using the phrase
“means for” or, in the case of a method claim, the element is
recited using the phrase “step for.”

What is claimed is:

1. A method of compression on multiple data flows for
communication between a user equipment (UE) and a serving
node, comprising:

receiving multiple data flows for compression, wherein

each of the multiple data flows includes a plurality of
data packets, with each data packet having a data packet
header and a payload;

determining a compression state for each of the multiple

data flows;
performing a first compression algorithm on each of the
multiple data flows determined to have a compression
state set to a do-not-compress state, wherein the first
compression algorithm includes compressing the data
packet header of each data packet without compressing
the payload of each data packet;
determining a duration corresponding to at least one or
both of an amount of time the compression state is set to
the do-not-compress state and a number of packets com-
pressed during the do-not-compress state for each of the
multiple data flows;
changing the compression state to a testing state on each of
the multiple data flows in response to determining that
the duration exceeded a duration threshold; and

performing a second compression algorithm on each of the
multiple data flows with the compression state set to a
testing state.

2. The method of claim 1, wherein performing the first
compression algorithm on each of the multiple data flows
further comprises setting a filtered compression percentage
for each of the multiple data flows, wherein the filtered com-
pression percentage corresponds to a level of compression on
each of the multiple data flows.

15

20

25

30

35

40

45

50

55

60

65

30

3. The method of claim 2, wherein the level of compression
on each of the multiple data flows corresponds to a level of
compression of the payload of each data packet.
4. The method of claim 1, wherein performing the second
compression algorithm on each of the multiple data flows
further comprises:
initializing a filtered compression percentage to a default
value on each of the multiple data flows, wherein the
filtered compression percentage corresponds to a level
of compression on each of the multiple data flows;

compressing one or more data packets on each of the mul-
tiple data flows;

updating the filtered compression percentage on each of

the multiple data flows as each of the one or more data
packets are compressed;

comparing the filtered compression percentage on each of

the multiple data flows to a compression threshold for
each of the multiple data flows; and

determining whether to change the compression state on

each ofthe multiple data flows based on the comparison.

5. The method of claim 4, wherein the level of compression
on each of the multiple data flows corresponds to a level of
compression of the payload of each data packet.

6. The method of claim 4, wherein determining whether to
change the compression state on each of the multiple data
flows based on the comparison further comprises:

changing the compression state to a compress state when

the filtered compression percentage satisfies the com-
pression threshold; and

changing the compression state to the do-not-compress

state when the filtered compression percentage does not
satisfy the compression threshold.

7. The method of claim 6, further comprising increasing the
duration threshold when the compression state is changed to
the do-not-compress state, wherein the duration threshold is
increased either linearly or exponentially.

8. The method of claim 6, further comprising resetting the
duration threshold to an initial duration threshold value when
the compression state changes to the compress state.

9. The method of claim 6, wherein changing the compres-
sion state to the compress state further comprises:

compressing one or more data packets on each of the mul-

tiple data flows;

updating the filtered compression percentage on each of

the multiple data flows as each of the one or more data
packets are compressed;

comparing the filtered compression percentage on each of

the multiple data flows to the compression threshold;
and

determining whether to change the compression state on

each ofthe multiple data flows based on the comparison.

10. The method of claim 9, wherein determining whether to
change the compression state on each of the multiple data
flows based on the comparison further comprises:

changing the compression state to the do-not-compress

state when the filtered compression percentage does not
satisfy the compression threshold; and

continuing to compress the one or more data packets on

each of the multiple data flows when the filtered com-
pression percentage satisfies the compression threshold.

11. The method of claim 6, wherein comparing the filtered
compression percentage to the compression threshold occurs
when a threshold number of the one or more data packets are
compressed.

12. The method of claim 1, wherein performing the first
compression algorithm on each of the multiple data flows

US 9,351,195 B2

31

further comprises updating a memory of the compressor with
the data packet header of each data packet.

13. An apparatus for compression on multiple data flows
for communication between a user equipment (UE) and a
serving node, comprising:

means for receiving multiple data flows for compression,

wherein each of the multiple data flows includes a plu-
rality of data packets, with each data packet having a
data packet header and a payload;

means for determining a compression state for each of the

multiple data flows;
means for performing a first compression algorithm on
each of the multiple data flows determined to have a
compression state set to a do-not-compress state,
wherein the first compression algorithm includes com-
pressing the data packet header of each data packet
without compressing the payload of each data packet;

means for determining a duration corresponding to at least
one or both of an amount of time the compression state
is set to the do-not-compress state and a number of
packets compressed during the do-not-compress state
for each of the multiple data flows;

means for changing the compression state to a testing state

on each of the multiple data flows in response to deter-
mining that the duration exceeded a duration threshold;
and

means for performing a second compression algorithm on

each of the multiple data flows with the compression
state set to a testing state.
14. An apparatus for compression on multiple data flows
for communication between a user equipment (UE) and a
serving node, comprising:
a memory that stores instructions; and
at least one processor coupled with the memory, wherein
the at least one processor and the memory are configured
to:
receive multiple data flows for compression, wherein
each of the multiple data flows includes a plurality of
data packets, with each data packet having a data
packet header and a payload;
determine a compression state for each of the multiple
data flows;
perform a first compression algorithm on each of the
multiple data flows determined to have a compression
state set to a do-not-compress state, wherein the first
compression algorithm includes compressing the data
packet header of each data packet without compress-
ing the payload of each data packet;
determine a duration corresponding to at least one or both
of'an amount of time the compression state is set to the
do-not-compress state and a number of packets com-
pressed during the do-not-compress state for each of the
multiple data flows;
change the compression state to a testing state on each of
the multiple data flows in response to determining that
the duration exceeded a duration threshold; and

perform a second compression algorithm on each of the
multiple data flows with the compression state set to a
testing state.

15. The apparatus of claim 14, wherein to perform the first
compression algorithm the at least one processor and the
memory are further configured to set a filtered compression
percentage for each of the multiple data flows, wherein the
filtered compression percentage corresponds to a level of
compression on each of the multiple data flows.

10

20

30

35

40

45

50

55

32

16. The apparatus of claim 15, wherein the level of com-
pression on each of the multiple data flows corresponds to a
level of compression of the payload of each data packet.
17. The apparatus of claim 15, wherein the at least one
processor and the memory configured to perform the second
compression algorithm are further configured to:
initialize a filtered compression percentage to a default
value on each of the multiple data flows, wherein the
filtered compression percentage corresponds to a level
of compression on each of the multiple data flows;

compress one or more data packets on each of the multiple
data flows;

update the filtered compression percentage on each of the

multiple data flows as each of the one or more data
packets are compressed;

compare the filtered compression percentage on each of the

multiple data flows to a compression threshold for each
of the multiple data flows; and

determine whether to change the compression state on each

of the multiple data flows based on the comparison.

18. The apparatus of claim 17, wherein the level of com-
pression on each of the multiple data flows corresponds to a
level of compression of the payload of each data packet.

19. The apparatus of claim 17, wherein the at least one
processor and the memory configured to determine whether
to change the compression state are further configured to:

change the compression state to a compress state when the

filtered compression percentage satisfies the compres-
sion threshold; and

change the compression state to the do-not-compress state

when the filtered compression percentage does not sat-
isfy the compression threshold.

20. The apparatus of claim 19, wherein the at least one
processor and the memory are further configured to increase
the duration threshold when the compression state is changed
to the do-not-compress state, and wherein the duration thresh-
old is increased either linearly or exponentially.

21. The apparatus of claim 19, wherein the at least one
processor and the memory are further configured to reset the
duration threshold to an initial duration threshold value when
the compression state changes to the compress state.

22. The apparatus of claim 19, wherein the at least one
processor and the memory configured to change the compres-
sion state to the compress state are further configured to:

compress one or more data packets on each of the multiple

data flows;

update the filtered compression percentage on each of the

multiple data flows as each of the one or more data
packets are compressed;

compare the filtered compression percentage on each of the

multiple data flows to the compression threshold; and
determine whether to change the compression state on each
of the multiple data flows based on the comparison.

23. The apparatus of claim 22, wherein the at least one
processor and the memory configured to determine whether
to change the compression state are further configured to:

change the compression state to the do-not-compress state

when the filtered compression percentage does not sat-
isfy the compression threshold; and

continue to compress the one or more data packets on each

of the multiple data flows when the filtered compression
percentage satisfies the compression threshold.

24. The apparatus of claim 19, wherein the at least one
processor and the memory are configured to compare the
filtered compression percentage to the compression threshold
occurs when a threshold number of the one or more data
packets are compressed.

US 9,351,195 B2

33

25. The apparatus of claim 14, wherein the at least one
processor and the memory configured to perform the first
compression algorithm are further configured to update a
memory of the compressor with the data packet header of
each data packet.

26. A non-transitory computer-readable medium storing
computer executable code for compression on multiple data
flows for communication between a user equipment (UE) and
a serving node, comprising:

code for receiving multiple data flows for compression,

wherein each of the multiple data flows includes a plu-
rality of data packets, with each data packet having a
data packet header and a payload;

code for determining a compression state for each of the

multiple data flows;

code for performing a first compression algorithm on each

of'the multiple data flows determined to have a compres-

10

15

34

sion state set to a do-not-compress state, wherein the first
compression algorithm includes compressing the data
packet header of each data packet without compressing
the payload of each data packet;

code for determining a duration corresponding to at least
one or both of an amount of time the compression state
is set to the do-not-compress state and a number of
packets compressed during the do-not-compress state
for each of the multiple data flows;

code for changing the compression state to a testing state
on each of the multiple data flows in response to deter-
mining that the duration exceeded a duration threshold;
and

code for performing a second compression algorithm on
each of the multiple data flows with the compression
state set to a testing state.

#* #* #* #* #*

